Skip to main content

An Analysis of Slow Convergence in Interval Propagation

  • Conference paper
Principles and Practice of Constraint Programming – CP 2007 (CP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4741))

Abstract

When performing interval propagation on integer variables with a large range, slow-convergence phenomena are often observed: it becomes difficult to reach the fixpoint of the propagation. This problem is practically important, as it hinders the use of propagation techniques for problems with large numerical ranges, and notably problems arising in program verification. A number of attempts to cope with this issue have been investigated, yet all of the proposed techniques only guarantee a fast convergence on specific instances. An important question is therefore whether slow convergence is intrinsic to propagation methods, or whether an improved propagation algorithm may exist that would avoid this problem. This paper proposes the first analysis of the slow convergence problem under the light of complexity results. It answers the question, by a negative result: if we allow propagators that are general enough, computing the fixpoint of constraint propagation is shown to be intractable. Slow convergence is therefore unavoidable unless P=NP. The result holds for the propagators of a basic class of constraints.

An unabridged version of this paper including the missing proofs is available as a Microsoft Research Report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt, K.R.: The essence of constraint propagation. Theoretical Computer Science (TCS) 221(1-2), 179–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apt, K.R., Zoeteweij, P.: An analysis of arithmetic constraints on integer intervals. Constraints (to appear)

    Google Scholar 

  3. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. J. of Logic Programming (JLP) 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cleary, J.G.: Logical arithmetic. Future Computing Systems 2(2), 125–149 (1987)

    Google Scholar 

  5. Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3), 281–331 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dutertre, B., De Moura, L.M.: A fast linear arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Fruehwirth, T.W.: Theory and practice of constraint handling rules. J. of Logic Programming (JLP) 37(1-3), 95–138 (1998)

    Article  MATH  Google Scholar 

  8. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg (1994)

    Google Scholar 

  9. Krentel, M.W.: The complexity of optimization problems. In: Proc. of ACM Symp. on Theory of Computing (STOC), pp. 69–76. ACM Press, New York (1986)

    Google Scholar 

  10. Lebbah, Y., Lhomme, O.: Accelerating filtering techniques for numeric CSPs. Artificial Intelligence 139(1), 109–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leconte, M., Berstel, B.: Extending a CP solver with congruences as domains for program verification. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 22–33. Springer, Heidelberg (2006)

    Google Scholar 

  12. Lhomme, O., Gottlieb, A., Rueher, M., Taillibert, P.: Boosting the interval narrowing algorithm. In: Proc.of Joint Int. Conf. and Symp. on Logic Programming (JICSLP), pp. 378–392. MIT Press, Cambridge (1996)

    Google Scholar 

  13. Papadimitiou, C.: On the complexity of integer programming. J. of the ACM 28(4), 765–768 (1981)

    Article  Google Scholar 

  14. Papadimitriou, Ch.H.: Computational Complexity. Addison Wesley, Reading (1994)

    Google Scholar 

  15. Seshia, S.A., Bryant, R.A.: Deciding quantifier-free presburger formulas using parametrized solution bounds. Logical Methods in Computer Science 1(2) (2005)

    Google Scholar 

  16. Tarski, A.: A lattice-theoretic fixpoint theorem and its applications. Pacific J. of Mathematics 5, 285–309 (1955)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Bessière

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bordeaux, L., Hamadi, Y., Vardi, M.Y. (2007). An Analysis of Slow Convergence in Interval Propagation. In: Bessière, C. (eds) Principles and Practice of Constraint Programming – CP 2007. CP 2007. Lecture Notes in Computer Science, vol 4741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74970-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74970-7_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74969-1

  • Online ISBN: 978-3-540-74970-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics