Skip to main content

Single-Crystal Scintillation Materials

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

Scintillation materials are employed to detect x-ray and γ-ray photons or accelerated particles. Wide-bandgap semiconductor or insulator materials with a high degree of structural perfection are suitable for this purpose. They must accomplish fast and efficient transformation of incoming high-energy photon/particles to a number of electron–hole pairs collected in the conduction and valence bands, respectively, and their radiative recombination at suitable luminescence centers in the material. Generated ultraviolet (UV) or visible light can then be detected at high sensitivity by conventional solid-state semiconductor- or photomultiplier-based photodetectors, which are an indispensable part of scintillation detectors.

An insight into this field will be provided for a wider scientific audience and at the same time we will point out some current hot topics. After reviewing the historical issues and fundamental physical processes of the x(γ)-to-visible light transformation occurring in scintillators, practically important material parameters, characteristics, and related measurement principles will be summarized. An overview of selected modern single-crystal and optical ceramic materials will be given. Particular attention will be paid to the relation between the manufacturing technology used and the occurrence of material defects and imperfections. The study and understanding of related trapping states in the forbidden gap and their role in the energy transfer and storage processes in the material will be shown to be of paramount importance for material optimization. Correlated experiments of time-resolved luminescence spectroscopy, wavelength-resolved thermally stimulated luminescence, and electron paramagnetic resonance offer a powerful tool for this purpose. Future prospects and directions for activity in the field will be briefly mentioned as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-D:

two-dimensional

AP:

atmospheric pressure

CCD:

charge-coupled device

CT:

computer tomography

ENDOR:

electron nuclear double resonance

EPR:

electron paramagnetic resonance

ESR:

electron spin resonance

GSO:

Gd2SiO5

HE:

high energy

LPE:

liquid-phase epitaxy

LPS:

Lu2Si2O7

LSO:

Lu2SiO5

LY:

light yield

MCD:

magnetic circular dichroism

ODMR:

optically detected magnetic resonance

PET:

positron emission tomography

PWO:

PbWO4

RE:

rare earth

RE:

reference electrode

RF:

radiofrequency

RT:

room temperature

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

STE:

self-trapped exciton

TSC:

thermally stimulated conductivity

TSL:

thermally stimulated luminescence

UV:

ultraviolet

VB:

valence band

VB:

vertical Bridgman

VUV:

vacuum ultraviolet

YAG:

yttrium aluminum garnet

YAP:

yttrium aluminum perovskite

YPS:

(Y2)Si2O7

YSO:

Y2SiO5

References

  1. W.C. Röntgen: Über eine neue Art von Strahlen, Sitz Ber. Phys. Med. Ges. Würzb 9, 132–141 (1895), in German

    Google Scholar 

  2. W.C. Röntgen: On a new kind of rays, Science 3, 227–231 (1896)

    Article  ADS  Google Scholar 

  3. H. Becquerel: Sur les radiations invisibles emises par les corps phosphorescents, Com. Rend. 122, 501–503 (1896), in French

    Google Scholar 

  4. M. Curie: Rayons emises par les composes de lʼuranium et du thorium, Com. Rend. 126, 1101–1103 (1898), in French

    Google Scholar 

  5. P. Curie, M. Curie: Sur une substance nouvelle radio-active, continue dans la pechblende, Com. Rend. 127, 175–178 (1898), in French

    Google Scholar 

  6. L. Ozawa, M. Itoh: Cathode ray tube phosphors, Chem. Rev. 103, 3835–3855 (2003)

    Article  Google Scholar 

  7. R. Hofstätter: The detection of gamma-rays with thallium-activated sodium iodide crystals, Phys. Rev. 75, 796–810 (1949)

    Article  ADS  Google Scholar 

  8. W. Van Sciver, R. Hofstätter: Scintillations in thallium-activated CaI2 and CsI, Phys. Rev. 84, 1062–1063 (1951)

    Article  Google Scholar 

  9. M.J. Weber: Inorganic scintillators: today and tomorrow, J. Lumin. 100, 35–45 (2002)

    Article  Google Scholar 

  10. M.J. Weber, R.R. Monchamp: Luminescence of Bi4Ge3O12: spectral and decay properties, J. Appl. Phys. 44, 5495–5499 (1973)

    Article  ADS  Google Scholar 

  11. C.W.E. van Eijk, J. Andriessen, P. Dorenbos, R. Visser: Ce3+ doped inorganic scintillators, Nucl. Instrum. Methods Phys. Res. A 348, 546–550 (1994)

    Article  ADS  Google Scholar 

  12. C.W.E. van Eijk: Inorganic-scintillator development, Nucl. Instrum. Methods Phys. Res. A 460, 1–14 (2001)

    Article  ADS  Google Scholar 

  13. G. Blasse, B.C. Grabmaier: Luminescent Materials (Springer, Berlin 1994)

    Book  Google Scholar 

  14. G.F. Knoll: Radiation Detection and Measurement (Wiley, New York 2000)

    Google Scholar 

  15. P.A. Rodnyi: Physical Processes in Inorganic Scintillators (CRC, Boca Raton 1997)

    Google Scholar 

  16. S. Shionoya, W.M. Yen (Eds.): Phosphor Handbook (CRC, Boca Raton 1998)

    Google Scholar 

  17. L.H. Brixner: New x-ray phosphors, Mater. Chem. Phys. 16, 253–281 (1987)

    Article  Google Scholar 

  18. M. Ishii, M. Kobayashi: Single crystals for radiation detectors, Prog. Cryst. Growth Charact. Mater. 23, 245–311 (1992)

    Article  Google Scholar 

  19. A.J. Wojtowicz: Rare-earth-activated wide bandgap materials for scintillators, Nucl. Instrum. Methods Phys. Res. A 486, 201–207 (2002)

    Article  ADS  Google Scholar 

  20. C.W.E. van Eijk: Inorganic scintillators in medical imaging, Phys. Med. Biol. 47, R85–R106 (2002)

    Article  Google Scholar 

  21. M. Nikl: Scintillation detectors for x-rays, Meas. Sci. Technol. 17, R37–R54 (2006)

    Article  ADS  Google Scholar 

  22. M. Nikl: Wide band gap scintillation materials: Progress in the technology and material understanding, Phys. Status Solidi (a) 178, 595–620 (2000)

    Article  ADS  Google Scholar 

  23. D.J. Robbins: On predicting the maximum efficiency of phosphor systems excited by ionizing-radiation, J. Electrochem. Soc. 127, 2694–2702 (1980)

    Article  Google Scholar 

  24. A. Lempicki, A.J. Wojtowicz, E. Berman: Fundamental limits of scintillator performance, Nucl. Instrum. Methods Phys. Res. A 333, 304–311 (1993)

    Article  ADS  Google Scholar 

  25. P.A. Rodnyi, P. Dorenbos, C.W.E. van Eijk: Energy loss in inorganic scintillators, Phys. Status Solidi (b) 187, 15–29 (1995)

    Article  ADS  Google Scholar 

  26. A.N. Vasilʼev: Polarization approximation for electron cascade in insulators after high-energy excitation, Nucl. Instrum. Methods Phys. Res. B 107, 165–171 (1996)

    Article  ADS  Google Scholar 

  27. J.A. Shepherd, S.M. Gruner, M.W. Tate, M. Tecotzky: Study of afterglow in x-ray phosphors for use on fast-framing charge-coupled device detectors, Opt. Eng. 36, 3212–3222 (1997)

    Article  ADS  Google Scholar 

  28. S. Kubota, J. Ruan, M. Itoh, S. Hashimoto, S. Sakuragi: A new type of luminescence mechanism in large band-gap insulators: Proposal for fast scintillation materials, Nucl. Instrum. Methods Phys. Res. A 289, 253–260 (1990)

    Article  ADS  Google Scholar 

  29. M. Nikl, N. Solovieva, K. Apperson, D.J.S. Birch, A. Voloshinovskii: Scintillators based on aromatic dye molecules doped in a sol-gel glass host, Appl. Phys. Lett. 86, 101914 (2005)

    Article  ADS  Google Scholar 

  30. S.E. Derenzo, M.J. Weber, M.K. Klintenberg: Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In, Nucl. Instrum. Methods Phys. Res. A 486, 214–219 (2002)

    Article  ADS  Google Scholar 

  31. J. Wilkinson, K.B. Ucer, R.T. Williams: Picosecond excitonic luminescence in ZnO and other wide-gap semiconductors, Radiat. Meas. 38, 501–505 (2004)

    Article  Google Scholar 

  32. D. Ehrentraut, H. Sato, Y. Kagamitani, A. Yoshikawa, T. Fukuda, J. Pejchal, K. Polak, M. Nikl, H. Odaka, K. Hatanaka, H. Fukumura: Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide films doped with tri- and tetravalent cations prepared by liquid phase epitaxy, J. Mater. Chem. 16, 3369–3374 (2006)

    Article  Google Scholar 

  33. M. Nikl: Energy transfer phenomena in the luminescence of wide band-gap scintillators, Phys. Status Solidi (a) 202, 201–206 (2005)

    Article  ADS  Google Scholar 

  34. M. Nikl, K. Nitsch, K. Polak, E. Mihóková, I. Dafinei, E. Auffray, P. Lecoq, P. Reiche, R. Uecker: Slow components in the photoluminescence and scintillation decays of PbWO4 single crystals, Phys. Status Solidi (b) 195, 311–323 (1996)

    Article  ADS  Google Scholar 

  35. P. Dorenbos, J.P.M. de Haas, C.W.E. van Eijk: Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, IEEE Trans. Nucl. Sci. 42, 2190–2202 (1995)

    Article  ADS  Google Scholar 

  36. C.D. Brandle: Czochralski growth of oxides, J. Cryst. Growth 264, 593–604 (2004)

    Article  ADS  Google Scholar 

  37. T. Fukuda, R. Rudolph, S. Uda: Fiber Crystal Growth from the Melt (Springer, Berlin 2004)

    Book  Google Scholar 

  38. A. Yoshikawa, M. Nikl, G. Boulon, T. Fukuda: Challenge and study for developing of novel single-crystalline optical materials using micro-pulling down method, Opt. Mater. 30, 6–10 (2007)

    Article  ADS  Google Scholar 

  39. M. Nikl, J.A. Mareš, J. Chval, E. Mihóková, N. Solovieva, M. Martini, A. Vedda, K. Blažek, P. Maly, K. Nejezchleb, P. Fabeni, G.P. Pazzi, V. Babin, K. Kalder, A. Krasnikov, S. Zazubovich, C. DʼAmbrosio: An effect of Zr4+ co-doping of YAP:Ce scintillator, Nucl. Instrum. Methods Phys. Res. A 486, 250–253 (2002)

    Article  ADS  Google Scholar 

  40. C. Brecher, A. Lempicki, S.R. Miller, J. Glodo, E.E. Ovechkina, V. Gaysinskiy, V.V. Nagarkar, R.H. Bartram: Suppression of afterglow in CsI:Tl by codoping with Eu2+– I: Experimental, Nucl. Instrum. Methods Phys. Res. A 558, 450–457 (2006)

    Article  ADS  Google Scholar 

  41. J. Hlinka, E. Mihóková, M. Nikl, K. Polak, J. Rosa: Energy transfer between AT and AX minima in KBr:Tl, Phys. Status Solidi (b) 175, 523–540 (1993)

    Article  ADS  Google Scholar 

  42. S.W.S. McKeever: Thermoluminescence of Solids (Cambridge University Press, Cambridge 1985)

    Book  Google Scholar 

  43. R. Chen, S.W.S. McKeever: Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore 1997)

    Book  Google Scholar 

  44. J.A. Weil, J.R. Bolton, J.E. Wertz: Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Wiley, New York 1994)

    Google Scholar 

  45. J.-M. Spaeth, J.R. Niklas, R.H. Bartram: Structural Analysis of Point Defects in Solids: An Introduction to Multiple Magnetic Resonance Spectroscopy (Springer, Berlin 1992)

    Book  Google Scholar 

  46. V.V. Laguta, M. Martini, A. Vedda, M. Nikl, E. Mihóková, P. Boháček, J. Rosa, A. Hofstaetter, B.K. Meyer, Y. Usuki: Photoinduced Pb+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study, Phys. Rev. B 64, 165102 (2001)

    Article  ADS  Google Scholar 

  47. W. van Loo: Luminescence of lead molybdate and lead tungstate. I. Experimental, Phys. Status Solidi (a) 27, 565–574 (1979)

    Google Scholar 

  48. W. van Loo: Luminescence of lead molybdate and lead tungstate. II. Discussion, Phys. Status Solidi (a) 28, 227–235 (1979)

    Google Scholar 

  49. J.A. Groening, G. Blasse: Some new observations on the luminescence of PbMoO4 and PbWO4, J. Solid State Chem. 32, 9–20 (1980)

    Article  ADS  Google Scholar 

  50. R. Öder, A. Scharmann, D. Schwabe, B. Vitt: Growth and properties of PbWO4 and Pb(WO4)1-x(MoO4)x mixed crystals, J. Cryst. Growth 43, 537–540 (1978)

    Article  ADS  Google Scholar 

  51. V.G. Baryshevsky, M.V. Korzhik, V.I. Moroz, V.B. Pavlenko, A.S. Lobko, A.A. Fyodorov, V.A. Kachanov, V.L. Solovjanov, B.I. Zadneprovsky, V.A. Nefyodov, P.V. Nefyodov, B.A. Dorogovin, L.L. Nagornaja: Single crystals of tungsten compounds as promising materials for the total absorption detectors of the e.m. calorimeters, Nucl. Instrum. Methods Phys. Res. A 322, 231–234 (1992)

    Article  ADS  Google Scholar 

  52. M. Kobayashi, M. Ishii, Y. Usuki, H. Yahagi: Scintillation characteristics of PbWO4 single crystals at room temperature, Nucl. Instrum. Methods Phys. Res. A 333, 429–433 (1993)

    Article  ADS  Google Scholar 

  53. K. Nitsch, M. Nikl, S. Ganschow, P. Reiche, R. Uecker: Growth of lead tungstate single crystal scintillators, J. Cryst. Growth 165, 163–165 (1996)

    Article  ADS  Google Scholar 

  54. K. Tanji, M. Ishii, Y. Usuki, M. Kobayashi, K. Hara, H. Takano, N. Senguttuvan: Crystal growth of PbWO4 by the vertical Bridgman method: Effect of crucible thickness and melt composition, J. Cryst. Growth 204, 505–511 (1999)

    Article  ADS  Google Scholar 

  55. A.A. Annenkov, M.V. Korzhik, P. Lecoq: Lead tungstate scintillation material, Nucl. Instrum. Methods Phys. Res. A 490, 30–50 (2002)

    Article  ADS  Google Scholar 

  56. R. Mao, J. Chen, D. Shen, Z. Yin: Growth and uniformity improvement of PbWO4 crystal with yttrium doping, J. Cryst. Growth 265, 518–524 (2004)

    Article  ADS  Google Scholar 

  57. A.N. Annenkov, E. Auffray, R. Chipaux, G.Y. Drobychev, A.A. Fedorov, M. Géléoc, N.A. Golubev, M.V. Korzhik, P. Lecoq, A.A. Lednev, A.B. Ligun, O.V. Missevitch, V.B. Pavlenko, J.-P. Peigneux, A.V. Singovski: Systematic study of the short-term instability of PbWO4 scintillator parameters under irradiation, Radiat. Meas. 29, 27–38 (1998)

    Article  Google Scholar 

  58. P. Boháček, M. Nikl, J. Novak, Z. Malkova, B. Trunda, J. Rysavy, S. Baccaro, A. Cecilia, I. Dafinei, M. Diemoz, K. Jurek: Congruent composition of PbWO4 single crystals, J. Electr. Eng. 50(2/s), 38–40 (1999)

    Google Scholar 

  59. N. Lei, B. Han, X.Q. Feng, G. Hu, Y. Zhang, Z. Yin: La3+ distribution and annealing effects in La:PbWO4 crystal, Phys. Status Solidi (a) 170, 37–45 (1998)

    Article  ADS  Google Scholar 

  60. A. Krasnikov, M. Nikl, S. Zazubovich: Localized excitons and defects in PbWO4 single crystals: A luminescence and photo-thermally stimulated disintegration study, Phys. Status Solidi (b) 243, 1727–1743 (2006)

    Article  ADS  Google Scholar 

  61. V. Murk, M. Nikl, E. Mihóková, K. Nitsch: A study of electron excitations in CaWO4 and PbWO4 single crystals, J. Phys. Cond. Matter 9, 249–256 (1997)

    Article  ADS  Google Scholar 

  62. M. Kobayashi, M. Ishii, K. Harada, Y. Usuki, H. Okuno, H. Shimizu, T. Yazawa: Scintillation and phosphorescence of PbWO4 crystals, Nucl. Instrum. Methods Phys. Res. A 373, 333–346 (1996)

    Article  ADS  Google Scholar 

  63. M. Böhm, A.E. Borsevich, G.Y. Drobychev, G.Y. Drobychev, A. Hofstaetter, O.V. Kondratiev, M.V. Korzhik, M. Luh, B.K. Meyer, J.P. Peigneux, A. Scharmann: Influence of Mo impurity on the spectroscopic and scintillation properties of PbWO4 crystals, Phys. Status Solidi (a) 167, 243–252 (1998)

    Article  ADS  Google Scholar 

  64. V. Babin, P. Boháček, A. Krasnikov, M. Nikl, A. Stolovits, S. Zazubovich: Origin of green luminescence in PbWO4 crystals, J. Lumin. 124, 113–119 (2007)

    Article  Google Scholar 

  65. G.P. Pazzi, P. Fabeni, M. Nikl, P. Bohacek, E. Mihokova, A. Vedda, M. Martini, M. Kobayashi, Y. Usuki: Delayed recombination luminescence in lead tungstate (PWO) scintillating crystals, J. Luminesc. 102/103, 791–796 (2003)

    Article  Google Scholar 

  66. M. Martini, G. Spinolo, A. Vedda, M. Nikl, K. Nitsch, V. Hamplova, P. Fabeni, G.P. Pazzi, I. Dafinei, P. Lecoq: Trap levels in PbWO4 crystals: Correlation with luminescence decay kinetics, Chem. Phys. Lett. 260, 418–422 (1996)

    Article  ADS  Google Scholar 

  67. A.N. Annenkov, E. Auffray, A.E. Borisevich, G.Y. Drobyshev, A.A. Fedorov, O.V. Kondratiev, M.V. Korzhik, P. Lecoq: Slow components and afterglow in PWO crystal scintillations, Nucl. Instrum. Methods Phys. Res. A 403, 302–312 (1998)

    Article  ADS  Google Scholar 

  68. E. Mihóková, M. Nikl, P. Boháček, V. Babin, A. Krasnikov, A. Stolovich, S. Zazubovich, A. Vedda, M. Martini, T. Grabowski: Decay kinetics of the green emission in PbWO4:Mo, J. Lumin. 102–103, 618–622 (2003)

    Article  Google Scholar 

  69. A. Hofstaetter, A. Scharmann, D. Schwabe, B. Vitt: EPR of radiation induced MoO4 3−-centres in lead tungstate, Z. Phys. B 30, 305–311 (1978)

    Article  ADS  Google Scholar 

  70. E. Auffray, I. Dafinei, P. Lecoq, M. Schneegans: Local trap centres in PbWO4 crystals, Radiat. Eff. Defects Solids 135, 841–845 (1995)

    Google Scholar 

  71. M. Springis, V. Tale, I. Tale: Nature of the blue luminescence bands in PbWO4, J. Lumin. 72–74, 784–785 (1997)

    Article  Google Scholar 

  72. V.V. Laguta, J. Rosa, M.I. Zaritskii, M. Nikl, Y. Usuki: Polaronic (WO4)3− centres in PbWO4 single crystals, J. Phys. Cond. Matter 10, 7293–7302 (1998)

    Article  ADS  Google Scholar 

  73. M. Martini, G. Spinolo, A. Vedda, M. Nikl, Y. Usuki: Shallow traps in PbWO4 studied by wavelength-resolved thermally stimulated luminescence, Phys. Rev. B 60, 4653–4658 (1999)

    Article  ADS  Google Scholar 

  74. V.V. Laguta, M. Martini, A. Vedda, E. Rosetta, M. Nikl, E. Mihokova, P. Boháček, J. Rosa, A. Hofstatter, B.K. Meyer, Y. Usuki: Photoinduced oxygen-vacancy related centers in PbWO_4: Electron spin resonance and thermally stimulated luminescence study, Radiat. Eff. Defects Solids 157, 1025–1031 (2002)

    Article  ADS  Google Scholar 

  75. A. Hofstaetter, M.V. Korzhik, V.V. Laguta, B.K. Meyer, V. Nagirnyi, R. Novotny: The role of defect states in the creation of intrinsic (WO_4)3- centers in PbWO_4 by sub-bandgap excitation, Radiat. Meas. 33, 533–536 (2001)

    Article  Google Scholar 

  76. V.V. Laguta, M. Martini, A. Vedda, E. Rosetta, M. Nikl, E. Mihóková, J. Rosa, Y. Usuki: Electron traps related to oxygen vacancies in PbWO4, Phys. Rev. B 67, 205102 (2003)

    Article  ADS  Google Scholar 

  77. M. Nikl, P. Boháček, K. Nitsch, E. Mihokova, M. Martini, A. Vedda, S. Crocci, G.P. Pazzi, P. Fabeni, S. Baccaro, B. Borgia, I. Dafinei, M. Diemoz, G. Organtini, E. Auffray, P. Lecoq, M. Kobayashi, M. Ishii, Y. Usuki: Decay kinetics and thermoluminescence PbWO4:La3+, Appl. Phys. Lett. 71, 3755–3757 (1997)

    Article  ADS  Google Scholar 

  78. S. Baccaro, P. Boháček, B. Borgia, A. Cecilia, I. Dafinei, M. Diemoz, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, K. Nitsch, Y. Usuki, A. Vedda: Influence of La3+-doping on radiation hardness and thermolumines-cence characteristics of PbWO4, Phys. Status Solidi (a) 160, R5–R6 (1997)

    Article  ADS  Google Scholar 

  79. S. Baccaro, P. Boháček, A. Cecilia, S. Croci, I. Dafinei, M. Diemoz, P. Fabeni, M. Ishii, O. Jarolimek, M. Kobayashi, M. Martini, M. Montecchi, M. Nikl, G. Organtini, G.P. Pazzi, J. Rosa, Y. Usuki, A. Vedda: The influence of defect states on scintillation characteristics of PbWO4, Radiat. Eff. Defects Solids 150, 15–19 (1999)

    Article  ADS  Google Scholar 

  80. V.V. Laguta, M. Martini, F. Meinardi, A. Vedda, A. Hofstaetter, B.K. Mayer, M. Nikl, E. Mihóková, J. Rosa, Y. Usuki: Photoinduced (WO4)3−-La3+ center in PbWO4: Electron spin resonance and thermally stimulated luminescence study, Phys. Rev. B 62, 10109–10114 (2000)

    Article  ADS  Google Scholar 

  81. V.V. Laguta, A. Vedda, D. Di Martino, M. Martini, M. Nikl, E. Mihóková, J. Rosa, Y. Usuki: Electron capture in PbWO4:Mo and PbWO4:Mo,La single crystals: ESR and TSL study, Phys. Rev. B 71, 235108 (2005)

    Article  ADS  Google Scholar 

  82. A. Hofstaetter, R. Öder, A. Scharman, D. Schwabe, B. Vitt: Paramagnetic resonance and thermoluminescence of the PbWO4/PbMoO4 mixed crystal system, Phys. Status Solidi (b) 89, 375–380 (1978)

    Article  ADS  Google Scholar 

  83. M. Nikl, P. Boháček, E. Mihóková, N. Solovieva, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, M. Kobayashi: Complete characterization of doubly doped PbWO4:Mo,Y scintillators, J. Appl. Phys. 91, 2791–2797 (2002)

    Article  ADS  Google Scholar 

  84. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, K. Nitsch: Improvement in transmittance and decay time of PbWO4 scintillating crystals by La-doping, Nucl. Instrum. Methods Phys. Res. A 399, 261–268 (1997)

    Article  ADS  Google Scholar 

  85. M. Kobayashi, Y. Usuki, M. Ishii, T. Yazawa, K. Hara, M. Tanaka, M. Nikl, S. Baccaro, A. Cecilia, M. Diemoz, I. Dafinei: Improvement of radiation hardness of PbWO4 scintillating crystals by La-doping, Nucl. Instrum. Methods Phys. Res. A 404, 149–156 (1998)

    Article  ADS  Google Scholar 

  86. Y.B. Abraham, N.A.W. Holzwarth, R.T. Williams, G.E. Matthews, A.R. Tackett: Electronic structure of oxygen-related defects in PbWO4 and CaMoO4 crystals, Phys. Rev. B 64, 245109 (2001)

    Article  ADS  Google Scholar 

  87. M. Kobayashi, S. Sugimoto, Y. Yoshimura, Y. Usuki, M. Ishii, N. Senguttuvan, K. Tanji, M. Nikl: A new heavy and radiation-hard Cherenkov radiator based on PbWO4, Nucl. Instrum. Methods Phys. Res. A 459, 482–493 (2001)

    Article  ADS  Google Scholar 

  88. Y.L. Huang, W.L. Zhu, X.Q. Feng, Z.Y. Man: The effects of La3+ doping on luminescence properties of PbWO4 single crystal, J. Solid State Chem. 172, 188–193 (2003)

    Article  ADS  Google Scholar 

  89. W. Li, X.Q. Feng, Y. Huang: Characteristics of the optical absorption edge and defect structures of La3+-doped PbWO4 crystals, J. Phys. Cond. Matter 16, 1325–1333 (2004)

    Article  ADS  Google Scholar 

  90. T. Chen, T.Y. Liu, Q.R. Zhang, F.F. Li, D.S. Tian, X.Y. Zhang: First principles study of the La3+ doping PbWO4 crystal for different doping concentrations, Phys. Lett. A 363, 477–481 (2007)

    Article  ADS  Google Scholar 

  91. M. Nikl, K. Nitsch, S. Baccaro, A. Cecilia, M. Montecchi, B. Borgia, I. Dafinei, M. Diemoz, M. Martini, E. Rosetta, G. Spinolo, A. Vedda, M. Kobayashi, M. Ishii, Y. Usuki, O. Jarolimek, R. Uecker: Radiation induced formation of color centres in PbWO4 single crystals, J. Appl. Phys. 82, 5758–5762 (1997)

    Article  ADS  Google Scholar 

  92. T. Liu, Q. Zhang, X. Mi, X.Q. Feng: A new absorption band and the decomposition of the 350 nm absorption band of PbWO4, Phys. Status Solidi (a) 184, 341–348 (2001)

    Article  ADS  Google Scholar 

  93. A. Annenkov, E. Auffray, M. Korzhik, P. Lecoq, J.P. Peigneux: On the origin of the transmission damage in lead tungstate crystals under irradiation, Phys. Status Solidi (a) 170, 47–62 (1998)

    Article  ADS  Google Scholar 

  94. Q. Lin, X.Q. Feng, Z. Man, Y. Zhang, Z. Yin, Q. Zhang: Origin of the radiation-induced 420 nm color center absorption band in PbWO4 crystals, Solid State Commun. 118, 221–223 (2001)

    Article  ADS  Google Scholar 

  95. Q. Deng, Z. Yin, R.Y. Zhu: Radiation-induced color centers in La-doped PbWO4 crystals, Nucl. Instrum. Methods Phys. Res. A 438, 415–420 (1999)

    Article  ADS  Google Scholar 

  96. S. Burachas, Y. Saveliev, M. Ippolitov, V. Manko, V. Lomonosov, A. Vasiliev, A. Apanasenko, A. Vasiliev, A. Uzunian, G. Tamulaitis: Physical origin of coloration and radiation hardness of lead tungstate scintillation crystals, J. Cryst. Growth 293, 62–67 (2006)

    Article  ADS  Google Scholar 

  97. M. Kobayashi, Y. Usuki, M. Ishii, M. Itoh, M. Nikl: Further study on different dopings into PbWO4 single crystals to increase the scintillation light yield, Nucl. Instrum. Methods Phys. Res. A 540, 381–394 (2005)

    Article  ADS  Google Scholar 

  98. M. Nikl, P. Boháček, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, M. Kobayashi: Efficient medium-speed PbWO4:Mo,Y scintillator, Phys. Status Solidi (a) 182, R3–R5 (2000)

    Article  ADS  Google Scholar 

  99. A. Annenkov, A. Borisevitch, A. Hofstaetter, M. Korzhik, V. Ligun, P. Lecoq, O. Missevitch, R. Novotny, J.P. Peigneux: Improved light yield of lead tungstate scintillators, Nucl. Instrum. Methods Phys. Res. A 450, 71–74 (2000)

    Article  ADS  Google Scholar 

  100. M. Nikl, P. Boháček, E. Mihóková, N. Solovieva, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, M. Kobayashi: Complete characterization of doubly doped PbWO4:Mo,Y scintillators, J. Appl. Phys. 91, 2791–2797 (2002)

    Article  ADS  Google Scholar 

  101. J.A. Mareš, A. Beitlerova, P. Boháček, M. Nikl, N. Solovieva, C. DʼAmbrosio: Influence of non-stoichiometry and doping on scintillating response of PbWO4 crystals, Phys. Status Solidi (c) 2, 73–76 (2005)

    Article  ADS  Google Scholar 

  102. X. Liu, G. Hu, X. Feng, Y. Huang, Y. Zhang: Influence of PbF2 doping on scintillation properties of PbWO4 single crystals, Phys. Status Solidi (a) 190, R1–R3 (2002)

    Article  ADS  Google Scholar 

  103. M. Nikl, P. Boháček, E. Mihóková, N. Solovieva, A. Vedda, M. Martini, G.P. Pazzi, P. Fabeni, M. Ishii: Enhanced efficiency of PbWO4:Mo,Nb scintillator, J. Appl. Phys. 91, 5041–5044 (2002)

    Article  ADS  Google Scholar 

  104. M.J. Weber: Optical spectra of Ce3+ and Ce3+-sensitized fluorescence in YAlO3, J. Appl. Phys. 44, 3205–3208 (1973)

    Article  ADS  Google Scholar 

  105. T. Takeda, T. Miyata, F. Muramatsu, T. Tomiki: Fast decay UV phosphor-YAlO3:Ce, J. Electrochem. Soc. 127, 438–444 (1980)

    Article  Google Scholar 

  106. E. Autrata, P. Schauer, J. Kvapil, J. Kvapil: A single crystal of YAlO3:Ce3+ as a fast scintillator in SEM, Scanning 5, 91–96 (1983)

    Article  Google Scholar 

  107. M. Nikl, A. Vedda, V.V. Laguta: Energy transfer and storage processes in scintillators: The role and nature of defects, Radiat. Meas. 42, 509–514 (2007)

    Article  Google Scholar 

  108. J. Kvapil, J. Kvapil, J. Kubelka, R. Autrata: The role of iron ions in YAG and YAP, Cryst. Res. Technol. 18, 127–131 (1983)

    Article  Google Scholar 

  109. G.-S. Li, X.-B. Guo, J. Lu, Z.-Z. Shi, J.-H. Wu, Y. Chen, J.-F. Chen: Application of several new procedures to improve the quality of Czochralski grown Nd3+:YA1O3 crystals, J. Cryst. Growth 118, 371–376 (1992)

    Article  Google Scholar 

  110. D.I. Savytskii, L.O. Vasylechko, A.O. Matkovskii, I.M. Solskii, A. Suchocki, D.Y. Sugak, F. Wallrafen: Growth and properties of YAlO3:Nd single crystals, J. Cryst. Growth 209, 874–882 (2000)

    Article  ADS  Google Scholar 

  111. G.-S. Li, Z.-Z. Shi, J.-H. Wu, Y. Chen, J.-F. Chen, H. Yang: Growth of large size yttrium aluminum perovskite (YAP) laser crystals without light scattering centers, J. Cryst. Growth 119, 363–367 (1992)

    Article  Google Scholar 

  112. J. Kvapil, B. Manek, B. Perner, J. Kvapil, R. Becker, G. Ringel: The role of argon in yttrium aluminates, Cryst. Res. Technol. 23, 549–554 (1988)

    Article  Google Scholar 

  113. A.G. Petrosyan, G.O. Shirinyan, C. Pédrini, C. Durjardin, K.L. Ovanesyan, R.G. Manucharyan, T.I. Butaeva, M.V. Derzyan: Bridgman growth and characterization of LuAlO3–Ce3+ scintillator crystals, Cryst. Res. Technol. 33, 241–248 (1998)

    Article  Google Scholar 

  114. J.A. Mareš, N. Cechova, M. Nikl, J. Kvapil, R. Kratky, J. Pospisil: Cerium-doped RE3+AlO3 perovskite scintillators: spectroscopy and radiation induced defects, J. Alloy. Comp. 275–277, 200–204 (1998)

    Article  Google Scholar 

  115. A.G. Petrosyan, G.O. Shyrinyan, K.L. Ovanesyan, C. Pédrini, C. Dujardin: Bridgman single crystal growth of Ce-doped (Lu1-xYx)AlO3, J. Cryst. Growth 198–199, 492–496 (1999)

    Article  Google Scholar 

  116. J. Trummer, E. Auffray, P. Lecoq, A.G. Petrosyan, P. Sempere-Roldan: Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods, Nucl. Instrum. Methods Phys. Res. A 551, 339–351 (2005)

    Article  ADS  Google Scholar 

  117. T. Tomiki, H. Ishikawa, T. Tashiro, M. Katsuren, A. Yonesu, T. Hotta, T. Yabiku, M. Akamine, T. Futemma, T. Nakaoka, I. Miyazato: Ce3+ centres in YAlO3 (YAP) single crystals, J. Phys. Soc. Jpn. 64, 4442–4449 (1995)

    Article  ADS  Google Scholar 

  118. V.G. Baryshevsky, M.V. Korzhik, V.I. Moroz, V.B. Pavlenko, A.A. Fyodorov, S.A. Smirnova, O.A. Egorycheva, V.A. Kachanov: YAlO3: Ce-fast-acting scintillators for detection of ionizing radiation, Nucl. Instrum. Methods Phys. Res. B 58, 291–293 (1991)

    Article  ADS  Google Scholar 

  119. S.I. Ziegler, J.G. Rogers, V. Selivanov, I. Sinitzin: Characteristics of the new YAlO3:Ce compared with BGO and GSO, IEEE Trans. Nucl. Sci. 40, 194–197 (1993)

    Article  ADS  Google Scholar 

  120. J.A. Mareš, A. Beitlerova, M. Nikl, N. Solovieva, C. DʼAmbrosio, K. Blažek, P. Maly, K. Nejezchleb, F. de Notaristefani: Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1 MeV, Radiat. Meas. 38, 353–357 (2004)

    Article  Google Scholar 

  121. C. Dujardin, C. Pédrini, J.C. Gacon, A.G. Petrosyan, A.N. Belsky, A.N. Vasilʼev: Luminescence properties and scintillation mechanisms of cerium- and praseodymium-doped lutetium orthoaluminate, J. Phys. Cond. Matter 9, 5229–5243 (1997)

    Article  ADS  Google Scholar 

  122. E.G. Gumanskaya, M.V. Korzhik, S.A. Smirnova, V.B. Pavlenko, A.A. Fedorov: Interconfiguration luminescence of Pr3+ ions in Y3Al5O12 and YAlO3 single crystals, Opt. Spectrosc. 72, 155–159 (1992), in Russian

    Google Scholar 

  123. W. Drozdowski, A.J. Wojtowicz, D. Wisniewski, T. Lukasiewicz, J. Kisielewski: Scintillation properties of Pr-activated LuAlO3, Opt. Mater. 28, 102–105 (2006)

    Article  ADS  Google Scholar 

  124. M. Zhuravleva, A. Novoselov, A. Yoshikawa, J. Pejchal, M. Nikl, T. Fukuda: Crystal growth and scintillation properties of Pr-doped YAlO3, Opt. Mater. 30, 171–173 (2007)

    Article  ADS  Google Scholar 

  125. L. van Pieterson, M. Heeroma, E. de Heer, A. Meijerink: Charge transfer luminescence of Yb3+, J. Lumin. 91, 177–193 (2000)

    Article  Google Scholar 

  126. M. Nikl, A. Yoshikawa, T. Fukuda: Charge transfer luminescence in Yb3+-containing compounds, Opt. Mater. 26, 545–549 (2004)

    Article  ADS  Google Scholar 

  127. M. Nikl, N. Solovieva, J. Pejchal, J.B. Shim, A. Yoshikawa, T. Fukuda, A. Vedda, M. Martini, D.H. Yoon: Very fast YbxY1-xAlO3 single crystal scintillators, Appl. Phys. Lett. 84, 882–884 (2004)

    Article  ADS  Google Scholar 

  128. J.B. Shim, A. Yoshikawa, T. Fukuda, J. Pejchal, M. Nikl, N. Sarukura, D.H. Yoon: Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals, J. Appl. Phys. 95, 3063–3068 (2004)

    Article  ADS  Google Scholar 

  129. H.R. Asatryan, J. Rosa, J.A. Mareš: EPR studies of Er3+, Nd3+ and Ce3+ in YAlO3 single crystals, Solid State Commun. 104, 5–9 (1997)

    Article  ADS  Google Scholar 

  130. C. Dujardin, C. Pedrini, W. Blanc, J.C. Gâcon, J.C. vanʼt Spijker, O.W.V. Frijns, C.W.E. van Eijk, P. Dorenbos, R. Chen, A. Fremout, F. Tallouf, S. Tavernier, P. Bruyndonckx, A.G. Petrosyan: Optical and scintillation properties of large LuAlO3:Ce3+ crystals, J. Phys. Condens. Matter 10, 3061–3073 (1998)

    Article  ADS  Google Scholar 

  131. A.J. Wojtowitz, J. Glodo, A. Lempicki, C. Brecher: Recombination and scintillation processes in YAlO3:Ce, J. Phys. Cond. Matter 10, 8401–8415 (1998)

    Article  ADS  Google Scholar 

  132. A. Vedda, M. Martini, F. Meinardi, J.A. Mareš, E. Mihóková, J. Chval, M. Dusek, M. Nikl: Tunnelling process in thermally stimulated luminescence of mixed LuxY1-xAlO3:Ce crystals, Phys. Rev. B 61, 8081–8086 (2000)

    Article  ADS  Google Scholar 

  133. J. Kvapil, Jos. Kvapil, B. Perner, B. Manek, K. Blažek, Z. Hendrich: Nonstoichiometric defects in YAG and YAP, Cryst. Res. Technol. 20, 473–478 (1985)

    Article  Google Scholar 

  134. D. Sugak, A. Matkovskii, D. Savitskii, A. Durygin, A. Suchocki, Y. Zhydachevskii, I. Solskii, I. Stefaniuk, F. Wallrafen: Growth and induced color centers in YAlO3–Nd single crystals, Phys. Status Solidi (a) 184, 239–250 (2001)

    Article  ADS  Google Scholar 

  135. J.A. Mareš, M. Nikl, E. Mihóková, N. Solovieva, K. Blažek, K. Nejezchleb, P. Maly, J. Pejchal, V. Mucka, M. Pospisil, A. Vedda, M. Martini, S. Baccaro: Radiation induced absorption color centers and damage in YAlO3:Ce and YAlO3:Ce,Zr scintillators, Radiat. Eff. Defects Solids 157, 677–681 (2002)

    Article  ADS  Google Scholar 

  136. O.F. Schirmer, K.W. Blazey, W. Berlinger, R. Diehl: ESR and optical absorption of bound-small polarons in YAlO3, Phys. Rev. B 11, 4201–4218 (1975)

    Article  ADS  Google Scholar 

  137. V.Y. Zorenko, A.S. Voloshinovskii, I.V. Konstankevych, G.B. Striganyuk, V.I. Gorbenko: Exciton luminescence of YAlO3 single crystals and single-crystal films, Opt. Spectrosc. 98, 555–558 (2005)

    Article  ADS  Google Scholar 

  138. V.Y. Zorenko, A.S. Voloshinovski, I.V. Konstankevych: Luminescence of F+ and F centers in YAlO3, Opt. Spectrosc. 96, 532–537 (2004)

    Article  ADS  Google Scholar 

  139. V.V. Laguta, M. Nikl, A. Vedda, E. Mihokova, J. Rosa, K. Blazek: The hole and electron traps in the YAlO_3 single crystal scintillator, Phys. Rev. B 80, 045114 (2009)

    Article  ADS  Google Scholar 

  140. E. Mihóková, M. Nikl, J.A. Mareš, A. Beitlerová, A. Vedda, K. Nejezchleb, K. Blažek, C. DʼAmbrosio: Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics, J. Lumin. 126, 77–80 (2006)

    Article  Google Scholar 

  141. V.V. Laguta, A.M. Slipenyuk, J. Rosa, M. Nikl, A. Vedda, K. Nejezchleb, K. Blažek: Electron spin resonance study of Mo3+ centers in YAlO3, Radiat. Meas. 38, 735–738 (2004)

    Article  Google Scholar 

  142. S.A. Basun, T. Danger, A.A. Kaplyanskii, D.S. McClure, K. Petermann, W.C. Wong: Optical and photoelectrical studies of charge-transfer processes in YAlO3:Ti crystals, Phys. Rev. B 54, 6141–6149 (1996)

    Article  ADS  Google Scholar 

  143. K. Blažek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, S. Zazubovich: Luminescence and defect creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3 crystals, Phys. Status Solidi (b) 242, 1315–1323 (2005)

    Article  ADS  Google Scholar 

  144. M. Nikl, E. Mihokova, V. Laguta, J. Pejchal, S. Baccaro, A. Vedda: Radiation damage processes in complex-oxide scintillators, Eur. Symp. Opt. Optoelectron. Damage VUV, EUV, X-ray Opt., ed. by L. Juha, R.H. Sobierajski, H. Wabnitz (2007)

    Google Scholar 

  145. C.R. Stanek, M.R. Levy, K.J. McClellan, B.P. Uberuaga, R.W. Grimes: Defect structure of ZrO2-doped rare earth perovskite scintillators, Phys. Status Solidi (b) 242, R113–R115 (2005)

    Article  ADS  Google Scholar 

  146. C.R. Stanek, K.J. McClellan, M.R. Levy, R.W. Grimes: Defect behavior in rare earth REAlO3 scintillators, J. Appl. Phys. 99, 113518 (2006)

    Article  ADS  Google Scholar 

  147. M. Kokta: Growth of oxide laser crystals, Opt. Mater. 30, 1–5 (2007)

    Article  ADS  Google Scholar 

  148. R. Autrata, P. Schauer, Jos. Kvapil, J. Kvapil: A single crystal of YAG – New fast scintillator in SEM, J. Phys. E 11, 707–708 (1978)

    ADS  Google Scholar 

  149. M. Moszynski, T. Ludziewski, D. Wolski, W. Klamra, L.O. Norlin: Properties of the YAG:Ce scintillator, Nucl. Instrum. Methods Phys. Res. A 345, 461–467 (1994)

    Article  ADS  Google Scholar 

  150. A. Lempicki, M.H. Randles, D. Wisniewski, M. Balcerzyk, C. Brecher, A.J. Wojtowitz: LuAlO3:Ce and other aluminate scintillators, IEEE Trans. Nucl. Sci. 42, 280–284 (1995)

    Article  ADS  Google Scholar 

  151. M. Nikl, E. Mihóková, J.A. Mareš, A. Vedda, M. Martini, K. Nejezchleb, K. Blažek: Traps and timing characteristics of LuAG:Ce3+ scintillator, Phys. Status Solidi (b) 181, R10–R12 (2000)

    Article  ADS  Google Scholar 

  152. M.J. Weber: Nonradiative decay from 5d states of rare earths in crystals, Solid State Commun. 12, 741–744 (1973)

    Article  ADS  Google Scholar 

  153. Y. Kuwano, K. Suda, N. Ishizawa, T. Yamada: Crystal growth and properties of (Lu,Y)3Al5O12, J. Cryst. Growth 260, 159–165 (2004)

    Article  ADS  Google Scholar 

  154. J. Kvapil, Jos. Kvapil, B. Manek, B. Perner: Czochralski growth of YAG:Ce in a reducing protective atmosphere, J. Cryst. Growth 52, 542–545 (1981)

    Article  ADS  Google Scholar 

  155. D. Mateika, E. Volkel, J. Haisma: Lattice-constant-adaptable crystallographics. II. Czochralski growth from multicomponent melts of homogeneous mixed-garnet crystals, J. Cryst. Growth 102, 994–1013 (1990)

    Article  ADS  Google Scholar 

  156. D.S. Hamilton, S.K. Gayen, G.J. Pogatshnik, R.D. Ghen, W.J. Miniscalco: Optical absorption and photoionization measurements from the excited states of Ce3+:Y3Al5O12, Phys. Rev. B 39, 8807–8815 (1989)

    Article  ADS  Google Scholar 

  157. M. Nikl, V.V. Laguta, A. Vedda: Energy transfer and charge carrier capture processes in wide-band-gap scintillators, Phys. Status Solidi (a) 204, 683–689 (2007)

    Article  ADS  Google Scholar 

  158. M. Nikl, J.A. Mareš, N. Solovieva, J. Hybler, A. Voloshinovskii, K. Nejezchleb, K. Blažek: Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator, Phys. Status Solidi (a) 201, R41–R44 (2004)

    Article  ADS  Google Scholar 

  159. W. Drozdowski, T. Lukasiewicz, A.J. Wojtowicz, D. Wisniewski, J. Kisielewski: Thermoluminescence and scintillation of praseodymium-activated Y3Al5O12 and LuAlO3 crystals, J. Cryst. Growth 275, e709–e714 (2005)

    Article  ADS  Google Scholar 

  160. M. Nikl, H. Ogino, A. Krasnikov, A. Beitlerova, A. Yoshikawa, T. Fukuda: Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal, Phys. Status Solidi (a) 202, R4–R6 (2005)

    Article  ADS  Google Scholar 

  161. H. Ogino, A. Yoshikawa, M. Nikl, K. Kamada, T. Fukuda: Scintillation characteristics of Pr-doped Lu3Al5O12 single crystals, J. Cryst. Growth 292, 239–242 (2006)

    Article  ADS  Google Scholar 

  162. S.R. Rotman, C. Warde, H.L. Tuller, J. Haggerty: Defect property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum-yttrium iron garnet solid solutions, J. Appl. Phys. 66, 3207–3210 (1989)

    Article  ADS  Google Scholar 

  163. C.Y. Chen, G.J. Pogatshnik, Y. Chen, M.R. Kokta: Optical and electron paramagnetic resonance studies of Fe impurities in yttrium aluminum garnet crystals, Phys. Rev. B 38, 8555–8561 (1988)

    Article  ADS  Google Scholar 

  164. I. Kamenskikh, C. Dujardin, N. Garnier, N. Guerassimova, G. Ledoux, V. Mikhailin, C. Pedrini, A. Petrosyan, A. Vasilʼev: Temperature dependence of the charge transfer and f-f luminescence of Yb3+ in garnets and YAP, J. Phys. Condens. Matter 17, 5587–5594 (2005)

    Article  ADS  Google Scholar 

  165. V.V. Laguta, A.M. Slipenyuk, M.D. Glinchuk, M. Nikl, J. Rosa, A. Vedda, K. Nejezchleb: Paramagnetic impurity defects in LuAG and LuAG:Sc single crystals, Opt. Mater. 30, 79–81 (2007)

    Article  ADS  Google Scholar 

  166. H.R. Lewis: Paramagnetic resonance of Ce3+ in YAG, J. Appl. Phys. 37, 739–741 (1966)

    Article  ADS  Google Scholar 

  167. V.V. Laguta, A.M. Slipenyuk, M.D. Glinchuk, I.P. Bykov, Y. Zorenko, M. Nikl, J. Rosa: Paramagnetic impurity defects in LuAG:Ce thick film scintillators, Radiat. Meas. 42, 835–838 (2007)

    Article  Google Scholar 

  168. C.R. Stanek, K.J. McClellan, M.R. Levy, C. Milanese, R.W. Grimes: The effect of intrinsic defects on RE3Al5O12 garnet scintillator performance, Nucl. Instrum. Methods Phys. Res. A 579, 27–30 (2007)

    Article  ADS  Google Scholar 

  169. M. Springis, A. Pujats, J. Valbis: Polarization of luminescence of colour centres in YAG crystals, J. Phys. Cond. Matter 3, 5457–5461 (1991)

    Article  ADS  Google Scholar 

  170. A. Pujats, M. Springis: The F-type centres in YAG crystals, Radiat. Eff. Defects Solids 155, 65–69 (2001)

    Article  ADS  Google Scholar 

  171. M.K. Ashurov, Y.K. Voronko, V.V. Osiko, A.A. Sobol, M.I. Timoshechkin: Spectroscopic study of stoichiometric deviation in crystals with garnet structure, Phys. Status Solidi (a) 42, 101–110 (1977)

    Article  ADS  Google Scholar 

  172. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, P.M. Nanau: High resolution optical spectroscopy of YAG:Nd: A test for structural and distribution models, Phys. Rev. B 51, 8–17 (1995)

    Article  ADS  Google Scholar 

  173. Y. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, D. Spassky: Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues, J. Lumin. 114, 85–94 (2005)

    Article  Google Scholar 

  174. Y. Zorenko, V. Gorbenko, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, D. Spassky, M. Nikl, K. Blažek: Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films, Phys. Status Solidi (a) 202, 1113–1119 (2005)

    Article  ADS  Google Scholar 

  175. V. Murk, N. Yaroshevich: Exciton and recombination processes in YAG crystals, J. Phys. Cond. Matter 7, 5857–5864 (1995)

    Article  ADS  Google Scholar 

  176. N.N. Ryskin, P. Dorenbos, C.W.E. van Eijk, S.K. Batygov: Scintillation properties of Lu3Al5-xScxO12 crystals, J. Phys. Cond. Matter 6, 10423–10434 (1994)

    Article  ADS  Google Scholar 

  177. M. Nikl, E. Mihóková, J. Pejchal, A. Vedda, Y. Zorenko, K. Nejezchleb: The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal, Phys. Status Solidi (b) 242, R119–R121 (2005)

    Article  ADS  Google Scholar 

  178. M. Nikl, E. Mihokova, J. Pejchal, A. Vedda, M. Fasoli, I. Fontana, V.V. Laguta, V. Babin, K. Nejezchleb, A. Yoshikawa, H. Ogino, G. Ren: Scintillator materials achievements, opportunities, and puzzles, IEEE Trans. Nucl. Sci. 55, 1035–1041 (2008)

    Article  ADS  Google Scholar 

  179. M. Nikl, J. Pejchal, E. Mihóková, J.A. Mareš, H. Ogino, A. Yoshikawa, T. Fukuda, A. Vedda, C. DʼAmbrosio: Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator, Appl. Phys. Lett. 88, 141916 (2006)

    Article  ADS  Google Scholar 

  180. Y.-N. Xu, W.Y. Ching, B.K. Brickeen: Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12, Phys. Rev. B 61, 1817–1824 (2000)

    Article  ADS  Google Scholar 

  181. A. Vedda, D. Di Martino, M. Martini, V.V. Laguta, M. Nikl, E. Mihóková, J. Rosa, K. Nejezchleb, K. Blažek: Thermoluminescence of Zr-codoped Lu3Al5O12:Ce crystals, Phys. Status Solidi (a) 195, R1–R3 (2003)

    Article  ADS  Google Scholar 

  182. C.R. Stanek, K.J. McClellan, M.R. Levy, R.W. Grimes: Extrinsic defect structure of RE3Al5O12 garnets, Phys. Status Solidi (b) 243, R75–R77 (2006)

    Article  ADS  Google Scholar 

  183. K. Takagi, T. Fukazawa: Cerium-activated Gd2SiO5 single crystal scintillator, Appl. Phys. Lett. 42, 43–45 (1983)

    Article  ADS  Google Scholar 

  184. T. Utsu, S. Akiyama: Growth and applications of Gd2SiO5:Ce scintillators, J. Cryst. Growth 109, 385–391 (1991)

    Article  ADS  Google Scholar 

  185. C.L. Melcher, R.A. Manente, C.A. Peterson, J.S. Schweizer: Czochralski growth of rare earth oxyorthosilicate single crystals, J. Cryst. Growth 128, 1001–1005 (1993)

    Article  ADS  Google Scholar 

  186. D.W. Cooke, K.J. McClellan, B.L. Bennett, J.M. Roper, M.T. Whittaker, R.E. Münchausen, R.C. Sze: Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5, J. Appl. Phys. 88, 7360–7362 (2000)

    Article  ADS  Google Scholar 

  187. C.L. Melcher, M.A. Spurrier, L. Eriksson, M. Eriksson, M. Schmand, G. Givens, R. Terry, T. Homant, R. Nutt: Advances in the scintillation performances of LSO:Ce single crystals, IEEE Trans. Nucl. Sci. 50, 762–766 (2003)

    Article  ADS  Google Scholar 

  188. M. Jie, G. Zhao, X. Zeng, L. Su, H. Pang, X. He, J. Xu: Crystal growth and optical properties of Gd1.99-xYxCe0.01SiO5 single crystals, J. Cryst. Growth 277, 175–180 (2005)

    Article  ADS  Google Scholar 

  189. J.D. Zavartsev, S.A. Koutovoi, A.I. Zagumennyi: Czochralski growth and characterization of large Ce3+:Lu2SiO5 single crystals co-doped with Mg2+ or Ca2+ or Tb3+ for scintillators, J. Cryst. Growth 275, e2167–e2171 (2005)

    Article  ADS  Google Scholar 

  190. B. Hautefeuille, K. Lebbou, C. Dujardin, J.M. Fourmigue, L. Grosvalet, O. Tillement, C. Pédrini: Shaped crystal growth of Ce3+-doped Lu2(1-x)Y2xSiO5 oxyorthosilicate for scintillator applications by pulling-down technique, J. Cryst. Growth 289, 172–177 (2006)

    Article  ADS  Google Scholar 

  191. C. Mansuy, R. Mahiou, J.-M. Nedelec: A new sol-gel route to Lu2SiO5 (LSO) scintillator: Powders and thin films, Chem. Mater. 15, 3242–3244 (2003)

    Article  Google Scholar 

  192. C. Mansuy, J.-M. Nedelec, R. Mahiou: Molecular design of inorganic scintillators: From alcoxides to scintillating materials, J. Mater. Chem. 14, 3274–3280 (2004)

    Article  Google Scholar 

  193. J.-K. Lee, R.E. Münchausen, J.-S. Lee, Q.X. Jia, M. Nastasi, J.A. Valdez, B.L. Bennett, D.W. Cooke, S.Y. Lee: Structure and optical properties of Lu2SiO5:Ce phosphor thin films, Appl. Phys. Lett. 89, 101905 (2006)

    Article  ADS  Google Scholar 

  194. J. Felsche: Rare earth silicates of the type RE2[SiO4]O, Naturwissenschaften 11, 565–566 (1971)

    Article  ADS  Google Scholar 

  195. T. Gustafsson, M. Klinterberg, S.E. Derenzo, M.J. Weber, J.O. Thomas: Lu2SiO5 by single-crystal x-ray and neutron diffraction, Acta Crystallogr. C 57, 668–669 (2001)

    Article  Google Scholar 

  196. W.Y. Ching, L. Ouyang, Y.-N. Xu: Electronic and optical properties of Y2SiO5 and Y2Si2O7 with comparison to α-SiO2 and Y2O3, Phys. Rev. B 67, 245108 (2003)

    Article  ADS  Google Scholar 

  197. D.W. Cooke, B.L. Bennett, R.E. Münchausen, J.-K. Lee, M.A. Nastasi: Intrinsic ultraviolet luminescence from Lu2O3, Lu2SiO5 and Lu2SiO5:Ce3+, J. Lumin. 106, 125–132 (2004)

    Article  Google Scholar 

  198. H. Suzuki, T.A. Tombrello, C.L. Melcher, J.S. Schweizer: UV and gamma-ray excited luminescence of cerium-doped rare-earth oxyorthosilicates, Nucl. Instrum. Methods Phys. Res. A 320, 263–272 (1992)

    Article  ADS  Google Scholar 

  199. H. Suzuki, T.A. Tombrello, C.L. Melcher, J.S. Schweizer: Light emission mechanism of Lu2(SiO4)O:Ce, IEEE Trans. Nucl. Sci. 40, 380–383 (1993)

    Article  ADS  Google Scholar 

  200. E. van der Kolk, S.A. Basun, G.F. Imbush, W.M. Yen: Temperature dependent spectroscopic studies of the electron delocalization dynamics of excited Ce ions in the wide band gap insulator, Lu2SiO5, Appl. Phys. Lett. 83, 1740–1742 (2003)

    Article  ADS  Google Scholar 

  201. M.-F. Joubert, S.A. Kazanskii, Y. Guyot, J.-C. Gâcon, C. Pédrini: Microwave study of photoconductivity induced by laser pulses in rare-earth-doped dielectric crystals, Phys. Rev. B 69, 165217 (2004)

    Article  ADS  Google Scholar 

  202. L. Pidol, O. Guillot-Noël, A. Kahn-Harari, B. Viana, D. Pelenc, D. Gourier: EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5, J. Phys. Chem. Solids 67, 643–650 (2006)

    Article  ADS  Google Scholar 

  203. F. Brethean-Raynal, M. Lance, P. Charpin: Crystal data for Lu2Si2O7, J. Appl. Cryst. 14, 349–350 (1981)

    Article  Google Scholar 

  204. P. Szupryczynski, C.L. Melcher, M.A. Spurrier, M.P. Maskarinec, A.A. Carey, A.J. Wojtowicz, W. Drozdowski, D. Wisniewski, R. Nutt: Thermoluminescence and scintillation properties of rare earth oxyorthosilicate scintillators, IEEE Trans. Nucl. Sci. 51, 1103–1110 (2004)

    Article  ADS  Google Scholar 

  205. W.W. Moses: Trends in PET imaging, Nucl. Instrum. Methods Phys. Res. A 471, 209–214 (2001)

    Article  ADS  Google Scholar 

  206. N. Shimura, M. Kamada, A. Gunji, S. Yamana, T. Usui, K. Kurashige, H. Ishibashi, N. Senguttuvan, S. Shimizu, K. Sumiya, H. Murayama: Zr-doped GSO:Ce single crystals and their scintillation performance, IEEE Trans. Nucl. Sci. 53, 2519–2522 (2006)

    Article  ADS  Google Scholar 

  207. S. Yamamoto, K. Matsumoto, M. Senda: Development of a GSO positron/single-photon imaging detector, Phys. Med. Biol. 51, 457–469 (2006)

    Article  Google Scholar 

  208. D.W. Cooke, B.L. Bennett, K.J. McClellan, J.M. Roper, M.T. Whittaker: Similarities in glow peak positions and kinetics parameters of oxyorthosilicates: evidence for unique intrinsic trapping sites, J. Lumin. 92, 83–89 (2001)

    Article  Google Scholar 

  209. P. Dorenbos, C.W.W. van Eijk, A.J.J. Bos, C.L. Melcher: Afterglow and thermoluminescence properties of Lu2SiO5:Ce scintillation crystals, J. Phys. Cond. Matter 6, 4167–4180 (1994)

    Article  ADS  Google Scholar 

  210. R. Visser, C.L. Melcher, J.S. Schweizer, H. Suzuki, T.A. Tombrello: Photostimulated luminescence and thermoluminescence of LSO scintillators, IEEE Trans. Nucl. Sci. 41, 689–693 (1994)

    Article  ADS  Google Scholar 

  211. D.W. Cooke, B.L. Bennett, R.E. Münchausen, K.J. McClellan, J.M. Roper, M.T. Whittaker: Intrinsic trapping sites in rare-earth and yttrium oxyorthosilicates, J. Appl. Phys. 86, 5308–5310 (1999)

    Article  ADS  Google Scholar 

  212. D.W. Cooke, B.L. Bennett, K.J. McClellan, R.E. Münchausen, J.R. Tesmer, C.J. Wetteland: Luminescence, emission spectra and hydrogen content of crystalline Lu2SiO5:Ce3+, Philos. Mag. B 82, 1659–1670 (2002)

    ADS  Google Scholar 

  213. L. Pidol, A. Kahn-Harari, B. Viana, B. Ferrand, P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, E. Virey: Scintillation properties of Lu2Si2O7:Ce3+, a fast and efficient scintillator crystal, J. Phys. Cond. Matter 15, 2091–2102 (2003)

    Article  ADS  Google Scholar 

  214. M. Nikl, H. Ogino, A. Yoshikawa, E. Mihóková, J. Pejchal, A. Beitlerova, A. Novoselov, T. Fukuda: Fast 5d–4f luminescence of Pr3+ in Lu2SiO5 single crystal host, Chem. Phys. Lett. 410, 218–221 (2005)

    Article  ADS  Google Scholar 

  215. O. Guillot-Noël, J.T.M. De Haas, P. Dorenbos, C.W.E. Van Eijk, K. Krämer, H.U. Güdel: Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3, J. Lumin. 85, 21–35 (1999)

    Article  Google Scholar 

  216. J. Andriessen, O.T. Antonyak, P. Dorenbos, P.A. Rodnyi, G.B. Stryganyuk, C.W.E. van Eijk, A.S. Voloshinovskii: Experimental and theoretical study of the spectroscopic properties of Ce3+ doped LaCl3 single crystals, Opt. Comm. 178, 355–363 (2000)

    Article  ADS  Google Scholar 

  217. K.W. Krämer, P. Dorenbos, H.U. Güdel, C.W.E. van Eijk: Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials, J. Mater. Chem. 16, 2773–2780 (2006)

    Article  Google Scholar 

  218. E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk: High energy resolution scintillator: Ce3+ activated LaBr3, Appl. Phys. Lett. 79, 1573–1575 (2001)

    Article  ADS  Google Scholar 

  219. E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel: Influence of the anion on the spectroscopy and scintillation mechanism in pure and Ce3+-doped K2LaX5 and LaX3 (X = Cl, Br, I), Phys. Rev. B 68, 045108 (2003)

    Article  ADS  Google Scholar 

  220. A. Bessiere, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel, C. de Mello Donega, A. Meijerink: Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+, Nucl. Instrum. Methods Phys. Res. A 537, 22–26 (2005)

    Article  ADS  Google Scholar 

  221. J. Glodo, K.S. Shah, M. Klugerman, P. Wong, B. Higgins, P. Dorenbos: Scintillation properties of LuI3:Ce, Nucl. Instrum. Methods Phys. Res. A 537, 279–281 (2005)

    Article  ADS  Google Scholar 

  222. M.D. Birowosuto, P. Dorenbos, C.W.E. van Eijk: Scintillation properties of LuI3:Ce3+-high light yield scintillators, IEEE Trans. Nucl. Sci. 52, 1114–1118 (2005)

    Article  ADS  Google Scholar 

  223. G. Meyer: The ammonium chloride route to anhydrous rare earth chlorides – The example of YCl3, Inorg. Synth. 25, 146–150 (1989)

    Article  Google Scholar 

  224. W.M. Higgins, J. Glodo, E. Van Loef, M. Klugerman, T. Gupta, L. Cirignano, P. Wong, K.S. Shah: Bridgman growth of LaBr3:Ce and LaCl3:Ce crystals for high-resolution gamma ray spectrometers, J. Cryst. Growth 287, 239–242 (2006)

    Article  ADS  Google Scholar 

  225. P. Dorenbos: Scintillation mechanism in Ce3+ doped halide scintillators, Phys. Status Solidi (a) 202, 195–200 (2005)

    Article  ADS  Google Scholar 

  226. J.S. Chivian, W.E. Case, D.D. Eden: The photon avalanche: A new phenomenon in Pr3+-based quantum counters, Appl. Phys. Lett. 35, 124 (1979)

    Article  ADS  Google Scholar 

  227. N. Pelletier-Allard, R. Pelletier: Multiphoton excitations in neodymium chlorides, Phys. Rev. B 36, 4425 (1987)

    Article  ADS  Google Scholar 

  228. E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel: Scintillation properties of LaCl3:Ce3+ crystals: Fast, efficient, and high energy resolution scintillators, IEEE Trans. Nucl. Sci. 48, 341–345 (2001)

    Article  ADS  Google Scholar 

  229. E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk: The scintillation mechanism in LaCl3:Ce3+, J. Phys. Cond. Matter 15, 1367–1375 (2003)

    Article  ADS  Google Scholar 

  230. U. Rogulis, S. Schweizer, J.-M. Spaeth, E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel: Magnetic resonance investigations of LaCl3:Ce3+ scintillators, Radiat. Eff. Defects Solids 157, 951–955 (2002)

    Article  ADS  Google Scholar 

  231. S.M. Kuzakov: Electron-hole traps and thermoluminescence of the LaCl3:TR single crystals, Rad. Prot. Dosim. 33, 115–117 (1990)

    Google Scholar 

  232. J. Glodo, K.S. Shah, M. Klugerman, P. Wong, B. Higgins: Thermoluminescence od LaBr3:Ce crystals, Nucl. Instrum. Methods Phys. Res. A 537, 93–96 (2005)

    Article  ADS  Google Scholar 

  233. E.V.D. Van Loef, P. Dorenbos, C.W.E. van Eijk, K. Krämer, H.U. Güdel: Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators, Nucl. Instrum. Methods Phys. Res. A 486, 254–258 (2002)

    Article  ADS  Google Scholar 

  234. P. Dorenbos, E.V.D. Van Loef, A.P. Vink, E. van der Kolk, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel, W.M. Higgins, K.S. Shah: Level location and spectroscopy of Ce3+, Pr3+, Er3+, and Eu2+ in LaBr3, J. Lumin. 117, 147–155 (2006)

    Article  Google Scholar 

  235. K.S. Shah, J. Glodo, M. Klugerman, W. Higgins, T. Gupta, P. Wong, W.W. Moses, S.E. Derenzo, M.J. Weber, P. Dorenbos: LuI3:Ce – a new scintillator for gamma ray spectroscopy, IEEE Trans. Nucl. Sci. 51, 2302–3205 (2004)

    Article  ADS  Google Scholar 

  236. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii: Neodymium doped yttrium aluminum garnet Y3Al5O12 nanocrystalline ceramics - a new generation of solid state laser and optical materials, J. Alloy. Compd. 341, 220–225 (2002)

    Article  Google Scholar 

  237. V. Lupei, A. Lupei, A. Ikesue: Single crystal and transparent ceramic Nd-doped oxide laser materials: a comparative spectroscopic investigation, J. Alloy. Compd. 380, 61–70 (2004)

    Article  Google Scholar 

  238. C. Greskovich, S. Duclos: Ceramic scintillators, Ann. Rev. Mater. Sci. 27, 69–88 (1997)

    Article  ADS  Google Scholar 

  239. B.C. Grabmaier, W. Rossner: New scintillators for x-ray computed tomography, Nucl. Tracks Rad. Meas. 21, 43–45 (1993)

    Article  Google Scholar 

  240. W. Rossner, M. Ostertag, F. Jermann: Properties and applications of gadolinium oxysulfide based ceramic scintillators. In: Physics and Chemistry of Luminescent Materials: Proc. 7th Int. Symp, Vol. 98–24, ed. by C.W. Struck, K.C. Mishra, B. DiBartolo (Electrochemical Society, Pennington 1998), 187–194

    Google Scholar 

  241. R. Hupke, C. Doubrava: The new UFC-detector for CT-imaging, Phys. Medica XV, 315–318 (1999)

    Google Scholar 

  242. S.J. Duclos, C.D. Greskovich, R.J. Lyons, J.S. Vartuli, D.M. Hoffman, R.J. Riedner, M.J. Lynch: Development of the HiLight scintillator for computed tomography medical imaging, Nucl. Instrum. Methods Phys. Res. A 505, 68–71 (2003)

    Article  ADS  Google Scholar 

  243. A. Lempicki, C. Brecher, P. Szupryczynski, H. Lingertat, V.V. Nagarkar, S.V. Tipnis, S.R. Miller: A new lutetia-based ceramic scintillator for x-ray imaging, Nucl. Instrum. Methods Phys. Res. A 488, 579–590 (2002)

    Article  ADS  Google Scholar 

  244. V.V. Nagarkar, S.R. Miller, S.V. Tipnis, A. Lempicki, A. Brecher, H. Lingertat: A new large area scintillator screen for x-ray imaging, Nucl. Instrum. Methods Phys. Res. B 213, 250–254 (2004)

    Article  ADS  Google Scholar 

  245. C. Brecher, R.H. Bartram, A. Lempicki: Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow, J. Lumin. 106, 159–168 (2004)

    Article  Google Scholar 

  246. E. Zych, C. Brecher, A.J. Wojtowitz, H. Lingertat: Luminescence properties of Ce-activated YAG optical ceramic scintillator materials, J. Lumin. 75, 193 (1997)

    Article  Google Scholar 

  247. H.-L. Li, X.-J. Liu, R.-J. Xie, Y. Zeng, L.-P. Huang: Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by Co-precipitation routes, J. Am. Ceram. Soc. 89, 2356 (2006)

    Google Scholar 

  248. M. Nikl, J.A. Mareš, N. Solovieva, H. Li, X. Liu, L. Huang, I. Fontana, M. Fasoli, A. Vedda, C. DʼAmbrosio: Scintillation characteristics of Lu3Al5O12:Ce optical ceramics, J. Appl. Phys. 101, 033515 (2007)

    Article  ADS  Google Scholar 

  249. B. Schmitt, M. Fuchs, E. Hell, W. Knupfer, P. Hackenschmied, A. Winnacker: Structured alkali halides for medical applications, Nucl. Instrum. Methods Phys. Res. B 191, 800–804 (2002)

    Article  ADS  Google Scholar 

  250. K. Oba, M. Ito, M. Yamaguchi, M. Tanaka: A CsI(Na) scintillation plate with high spatial-resolution, Adv. Electron. Electron. Phys. 74, 247–255 (1988)

    Article  Google Scholar 

  251. H. Washida, T. Sonoda: High resolution phosphor screen for x-ray image intensifier, Adv. Electron. Electron. Phys. 52, 201–207 (1979)

    Article  Google Scholar 

  252. C.M. Castelli, N.M. Allinson, K.J. Moon, D.L. Watson: High spatial resolution scintillator screens coupled to CCD detectors for x-ray imaging applications, Nucl. Instrum. Methods Phys. Res. A 348, 649–653 (1994)

    Article  ADS  Google Scholar 

  253. V.V. Nagarkar, T.K. Gupta, S.R. Miller, Y. Klugerman, M.R. Squillante, G. Entine: Structured CsI(T1) scintillators for x-ray imaging applications, IEEE Trans. Nucl. Sci. 45, 492–496 (1988)

    Article  ADS  Google Scholar 

  254. C.B. Johnson, L.D. Owen: Image tube intensified electronic imaging. In: Handbook of Optics, Vol. 1 (McGraw-Hill, New York 1995) pp. 21.1–21.32

    Google Scholar 

  255. J.-P. Moy: Recent developments in x-ray imaging detectors, Nucl. Instrum. Methods Phys. Res. A 442, 26–37 (2000)

    Article  ADS  Google Scholar 

  256. P. Olivier: Nuclear oncology, a fast growing field of nuclear medicine, Nucl. Instrum. Methods Phys. Res. A 527, 4–8 (2004)

    Article  ADS  Google Scholar 

  257. T.F. Budinger, K.M. Brennun, W.W. Moses, S.E. Derenzo: Advances in positron tomography for oncology, Nucl. Med. Biol. 23, 659–667 (1996)

    Article  Google Scholar 

  258. W.W. Moses, S.E. Derenzo: Prospects for time-of-flight PET using LSO scintillator, IEEE Trans. Nucl. Sci. 46, 474–478 (1999)

    Article  ADS  Google Scholar 

  259. Z.T. Kang, C.J. Summers, H. Menkar, B.K. Wagner, R. Durst, Y. Diawara, G. Mednikova, T. Thorson: ZnTe:O phosphor development for x-ray imaging applications, Appl. Phys. Lett. 88, 111904 (2006)

    Article  ADS  Google Scholar 

  260. A. Koch, C. Raven, P. Spanne, A. Snigirev: X-ray imaging with submicrometer resolution employing transparent luminescent screens, J. Opt. Soc. Am. A 15, 1940–1951 (1998)

    Article  ADS  Google Scholar 

  261. Y. Zorenko, I. Konstankevych, M. Globus, B. Grinyov, V. Lyubinskiy: New scintillation detectors based on oxide single crystal films for biological microtomography, Nucl. Instrum. Methods Phys. Res. A 505, 93–96 (2003)

    Article  ADS  Google Scholar 

  262. D. Ehrentraut, H. Sato, M. Miyamoto, T. Fukuda, M. Nikl, K. Maeda, I. Niikura: Fabrication of homoepitaxial ZnO films by low-temperature liquid-phase epitaxy, J. Cryst. Growth 287, 367–371 (2006)

    Article  ADS  Google Scholar 

  263. J.S. Neal, L.A. Boatner, N.C. Giles, L.E. Halliburton, S.E. Derenzo, E.D. Bourret-Courchesne: Comparative investigation of the performance of ZnO-based scintillators for use as a-particle detectors, Nucl. Instrum. Methods Phys. Res. A 568, 803–809 (2006)

    Article  ADS  Google Scholar 

  264. B.K. Meyer, J. Sann, A. Zeuner: Lithium and sodium acceptors in ZnO, Superlatices Microstr. 38, 344–348 (2005)

    Article  ADS  Google Scholar 

  265. A. Kaplan, A. Sajwani, Z.Y. Li, R.E. Palmer, J.P. Wilcoxon: Efficient vacuum ultraviolet light frequency downconversion by thin films of CdSe quantum dots, Appl. Phys. Lett. 88, 171105 (2006)

    Article  ADS  Google Scholar 

  266. K. Shibuya, M. Koshimizu, H. Murakami, Y. Muroya, Y. Katsumura, K. Asai: Development of ultra-fast semiconducting scintillators using quantum confinement effect, Jpn. J. Appl. Phys. 43, L1333–L1336 (2004)

    Article  ADS  Google Scholar 

  267. C.W.E. van Eijk: Inorganic scintillators for thermal neutron detection, Radiat. Meas. 38, 337–342 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Nikl , Anna Vedda or Valentin V. Laguta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Nikl, M., Vedda, A., Laguta, V.V. (2010). Single-Crystal Scintillation Materials. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_50

Download citation

Publish with us

Policies and ethics