Skip to main content

Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

Surface bombardment by energetic particles strongly affects thin-film growth and allows surface processing under non-thermal-equilibrium conditions. Deposition techniques enabling energy control can effectively manipulate the microstructure of the film and tune the resulting mechanical, electrical, and optical properties. At the high power densities used for depositing stoichiometric films in the case of pulsed ablation techniques such as pulsed laser deposition (PLD) and pulsed electron deposition (PED), the initial energetics of the material flux are typically on the order of 100 eV, much higher than the optimal values (≤10  eV) required for high-quality film growth. To overcome this problem and to facilitate particle energy transformation from the original as-ablated value to the optimal value for film growth, one needs to carefully select the ablation conditions, conditions for material flux propagation through a process gas, and location of the growth surface (substrate) within this flux. In this chapter, we discuss the evolution of the material particles energetics during the flux generation and propagation in PLD and PED, and identify critical control parameters that enable optimum thin-film growth. As an example, growth optimization of epitaxial GaN films is provided.

PED is complementary to PLD and exhibits an important ability to ablate materials that are transparent to laser wavelengths typically used in PLD. Some examples include wide-bandgap materials such as SiO2, Al2O3, and MgO. Both PLD and PED can be integrated within a single deposition module. PLD–PED systems enable in situ deposition of a wide range of materials required for exploring the next generation of complex structures that incorporate metals, complex dielectrics, ferroelectrics, semiconductors, and glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CVD:

chemical vapor deposition

DC:

direct current

FWHM:

full width at half-maximum

IBAD:

ion-beam-assisted deposition

MBE:

molecular-beam epitaxy

PEBS:

pulsed electron beam source

PED:

pulsed electron deposition

PL:

photoluminescence

PLD:

pulsed laser deposition

RF:

radiofrequency

RTPL:

room-temperature photoluminescence

SP:

sputtering

UV:

ultraviolet

VPE:

vapor-phase epitaxy

YAG:

yttrium aluminum garnet

YBCO:

YBa2Cu3O7-x

References

  1. D.M. Mattox, J.E. McDonald: Interface formation during thin film deposition, J. Appl. Phys. 34, 2493–2496 (1963)

    Article  ADS  Google Scholar 

  2. J.S. Colligon: Energetic condensation: processes, properties, and products, J. Vac. Sci. Technol. A 13, 1649–1657 (1995)

    Article  ADS  Google Scholar 

  3. H. Fehler: Vacuum 45, 997–1000 (1994)

    Article  Google Scholar 

  4. W.D. Sproul: Mater. Sci. Eng. A 163, 187–190 (1993)

    Google Scholar 

  5. J.M.E. Harper, J.J. Kuomo, H.R. Kaufman: J. Vac. Sci. Technol. 21, 737 (1982)

    Article  ADS  Google Scholar 

  6. D.B. Chrisey, G. Hubler (Eds.): Pulsed Laser Deposition of Thin Films (Wiley, New York 1994)

    Google Scholar 

  7. H.M. Smith, A.F. Turner: Vacuum deposited thin films using a ruby laser, Appl. Opt. 4, 147–148 (1965)

    Article  ADS  Google Scholar 

  8. K.L. Saenger: Pulsed laser deposition, Part 1, Process. Adv. Mater. 2, 1–24 (1993)

    Google Scholar 

  9. K.L. Saenger: Pulsed laser deposition, Part 2, Process. Adv. Mater. 3, 63–82 (1993)

    Google Scholar 

  10. J. Schou: Laser beam-solid interactions: fundamental aspects. In: Materials Surface Processing by Direct Energy Techniques, ed. by Y. Pauleau (Elsevier, Oxford 2006) pp. 35–66

    Chapter  Google Scholar 

  11. G. Müller, M. Konijnenberg, G. Krafft, C. Schultheiss: Thin film deposition by means of pulsed electron beam ablation. In: Science and Technology of Thin Films, ed. by F.C. Matacotta, G. Ottaviani (World Scientific, Singapore 1995) pp. 89–119

    Chapter  Google Scholar 

  12. D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin, Heidelberg 2000)

    Book  Google Scholar 

  13. M. Strikovski, K.S. Harshavardhan: Parameters that control pulsed electron beam ablation of materials and film deposition processes, Appl. Phys. Lett. 82, 853–855 (2003)

    Article  ADS  Google Scholar 

  14. A. Bogaerts, Z. Chen: Effect of laser parameters on laser ablation and laser-induced plasma formation, Spectrochim. Acta A 60, 1280–1307 (2005)

    Article  Google Scholar 

  15. Y.P. Raizer: Gas Discharge Physics (Springer, Berlin, Heidelberg 1997)

    Google Scholar 

  16. Y.B. Zelʼdovich, Y.P. Raizer: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York 1966)

    Google Scholar 

  17. H. Schittenhelm, G. Callies, P. Berger, H. Hügel: Investigation of extinction coefficient during excimer laser ablation and their interpretation in terms of Rayleigh scattering, J. Phys. D Appl. Phys. 29, 1564–1575 (1996)

    Article  ADS  Google Scholar 

  18. V.I. Mazhukin, V.V. Nossov, M.G. Nickiforov: Optical breakdown in aluminum vapor induced by ultraviolet laser radiation, J. Appl. Phys. 93, 56–66 (2003)

    Article  ADS  Google Scholar 

  19. C. Geertsen, P. Mauchien: Optical spectrometry coupled with laser ablation for analytical applications on solids. In: Application of Beams in Materials Technology, ed. by P. Misaelides (Kluwer, Dordrecht 1995) pp. 237–258

    Chapter  Google Scholar 

  20. S. Metev: Process characteristics and film properties in pulsed laser deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G. Hubler (Wiley, New York 1994) pp. 255–264

    Google Scholar 

  21. L. Torrisi, S. Gammino, L. Ando, V. Nassisi, D. Doria, A. Pedone: Comparison of nanosecond laser ablation at 1064 and 308 nm wavelength, Appl. Surf. Sci. 210, 262–273 (2003)

    Article  ADS  Google Scholar 

  22. H. Puell, H.J. Neusser, W. Kaiser: Heating of laser plasma generated at plane solid targets, Z. Naturforsch. A 25, 1807–1815 (1970)

    Article  ADS  Google Scholar 

  23. S.V. Gaponov, M.D. Strikovski: Formation of plasma during vaporisation of materials by the radiation of a CO2 TEA laser, Sov. Phys. Tech. Phys. 27(9), 1127–1130 (1982)

    ADS  Google Scholar 

  24. N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: an analytical model, Appl. Phys. A 69, s87–s93 (1999), (suppl.)

    Article  ADS  Google Scholar 

  25. J. Stevefelt, C.B. Collins: Modelling of a laser plasma source of amorphic diamond, J. Phys. D Appl. Phys. 24, 2149–2153 (1991)

    Article  ADS  Google Scholar 

  26. M. Strikovski: unpublished (1987)

    Google Scholar 

  27. R. Teghil, L. DʼAlessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet: Picosecond and femtosecond pulsed laser ablation and deposition of quasicrystals, Appl. Surf. Sci. 210, 307–317 (2003)

    Article  ADS  Google Scholar 

  28. L. DʼAlessio, A. Galasso, A. Santagata, R. Teghil, A.R. Villani, P. Villani, M. Zaccagnino: Plume dynamics in TiC laser ablation, Appl. Surf. Sci. 208/209, 113–118 (2003)

    Article  ADS  Google Scholar 

  29. D.M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing (Noyes, Westwood 1998)

    Google Scholar 

  30. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok: Double layer effects in laser-ablation plasma plumes, Phys. Rev. E 62, 5624–5635 (2000)

    Article  ADS  Google Scholar 

  31. H.S. Kim, H.S. Kwok: Correlation between target substrate distance and oxygen pressure in pulsed laser deposition of YBa2Cu3O7, Appl. Phys. Lett. 61, 2234–2236 (1992)

    Article  ADS  Google Scholar 

  32. P.E. Dyer, A. Issa, P.H. Key: An investigation of laser ablation and deposition of Y-Ba-Cu-O in an oxygen environment, Appl. Surf. Sci. 46, 89–95 (1990)

    Article  ADS  Google Scholar 

  33. H.S. Kwok, H.S. Kim, D.H. Kim, W.P. Chen, X.W. Sun, R.F. Xiao: Correlation between plasma dynamics and thin film properties in pulsed laser deposition, Appl. Surf. Sci. 109/110, 595–600 (1997)

    Article  ADS  Google Scholar 

  34. M. Strikovski, J. Miller: Pulsed laser deposition of oxides: Why the optimum rate is about 1 Å per pulse, Appl. Phys. Lett. 73, 1733–1735 (1998)

    Article  ADS  Google Scholar 

  35. C.C. Chang, X.D. Wu, R. Ramesh, X.X. Xi, T.S. Ravi, T. Venkatesan, D.M. Hwang, R.E. Muenchausen, S. Foltyn, N.S. Nogar: Origin of surface roughness for c-axis oriented Y-Ba-Cu-O superconducting films, Appl. Phys. Lett. 57, 1814–1816 (1990)

    Article  ADS  Google Scholar 

  36. A. Gupta, B.W. Hussey: Laser deposition of YBa2Cu3O7 − x films using a pulsed oxygen source, Appl. Phys. Lett. 58, 1211–1213 (1991)

    Article  ADS  Google Scholar 

  37. S.J. Pennycook, M.F. Chisholm, D.E. Jesson, R. Feenstra, S. Zhu, X.Y. Zheng, D.J. Lowndes: Growth and relaxation mechanisms of YBa2Cu3O7 − x films, Physica C 202, 1–11 (1992)

    Article  ADS  Google Scholar 

  38. A.T. Findikoglu, C. Doughty, S.M. Anlage, Q. Li, X.X. Xi, T. Venkatesan: DC electric field effect on the microwave properties of YBa2Cu3O7/SrTiO3 layered structures, J. Appl. Phys. 76, 2937–2944 (1994)

    Article  ADS  Google Scholar 

  39. W. Zhang, I.W. Boyd, M. Elliott, W. Herrenden-Harkerand: Transport properties and giant magneto resistance behavior in La-Nd-Sr-Mn-O films, Appl. Phys. Lett. 69, 1154–1156 (1996)

    Article  ADS  Google Scholar 

  40. Y.A. Bityurin, S.V. Gaponov, E.B. Klyuenkov, M.D. Strikovsky: GaAs compensation by intense fluxes of low energy particles, Solid State Commun. 45, 997–1000 (1983)

    Article  ADS  Google Scholar 

  41. S. Fähler, K. Sturm, H.U. Krebs: Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in ambient gas, Appl. Phys. Lett. 75, 3766–3768 (1999)

    Article  ADS  Google Scholar 

  42. A. Anders: Observation of self-sputtering in energetic condensation of metal ions, Appl. Phys. Lett. 85, 6137–6139 (2004)

    Article  ADS  Google Scholar 

  43. Oak Ridge National Laboratory: Atomic Data for Fusion, Vol. 3 (1985), http://www-cfadc.phy.ornl.gov/redbooks/three/a/3a18.html

  44. T. Scharf, J. Faupel, K. Sturm, H.-U. Krebs: Pulsed laser deposition of metals in various inert gas atmospheres, Appl. Phys. A 79, 1587–1589 (2004)

    Article  ADS  Google Scholar 

  45. T. Ohmi, T. Shibata: Advanced scientific semiconductor processing based on high-precision controlled low-energy ion bombardment, Thin Solid Films 241, 159–162 (1993)

    Article  ADS  Google Scholar 

  46. J.A. Thornton: The influence of bias sputter parameters on thick cupper coatings deposited using a hollow cathode, Thin Solid Films 40, 335–340 (1977)

    Article  ADS  Google Scholar 

  47. D.R. Brighton, G.K. Hubler: Binary collision cascade prediction of critical ion-to-atom arrival ratio in the production of thin films with reduced intrinsic stress, Nucl. Instrum. Methods Phys. Res. B 28, 527–530 (1987)

    Article  ADS  Google Scholar 

  48. K.S. Harshavardhan, H.M. Christen, S.D. Silliman, V.V. Talanov, S.M. Anlage, M. Rajeswari, J. Claasen: Low-loss YBa2Cu3O7 films on flexible, polycrystalline-yttria-stabilized zirconia tapes for cryoelectronic applications, Appl. Phys. Lett. 78, 1888–1890 (2001)

    Article  ADS  Google Scholar 

  49. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris: Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93, 2380–2388 (2003)

    Article  ADS  Google Scholar 

  50. S.S. Harilal, B. OʼShay, Y. Tao, M.S. Tillack: Ambient gas effects on the dynamics of laser-produced tin plume expansion, J. Appl. Phys. 99, 083303–1–083303–10 (2006)

    Article  ADS  Google Scholar 

  51. R.F. Wood, J.N. Leboeuf, K.R. Chen, D.B. Geohegan, A.A. Puretzky: Dynamics of plume propagation, splitting, and nano-particle formation during pulsed-laser ablation, Appl. Surf. Sci. 127-129, 151–158 (1998)

    Article  ADS  Google Scholar 

  52. S. Amoruso, B. Toftman, J. Schou: Broadening and attenuation of UV laser ablation plumes in background gases, Appl. Surf. Sci. 248, 323–328 (2005)

    Article  ADS  Google Scholar 

  53. N. Arnold, J. Gruber, J. Heitz: Spherical expansion of the vapor into ambient gas: An analytical model, Proc. COLAʼ99, 5th Int. Conf. Laser Ablation, Göttingen (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  54. J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H. Zhou, A.V. Nurmikko: AlGaN/GaN quantum well ultraviolet light emitting diodes, Appl. Phys. Lett. 73, 1688–1690 (1998)

    Article  ADS  Google Scholar 

  55. D. Doppalapudi, E. Iliopoulos, S.N. Basu, T.D. Moustakas: Epitaxial growth of gallium nitride thin films on a-Plane sapphire by molecular beam epitaxy, J. Appl. Phys. 85, 3582–3589 (1999)

    Article  ADS  Google Scholar 

  56. T. Nishida, H. Saito, N. Kobayashi: Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN, Appl. Phys. Lett. 79, 711–712 (2001)

    Article  ADS  Google Scholar 

  57. M. Cazzanelli, D. Cole, J.F. Donegan, J.G. Lunney, P.G. Middleton, K.P. OʼDonnell, C. Vinegoni, L. Pavesi: Photoluminescence of localized excitons in pulsed-laser-deposited GaN, Appl. Phys. Lett. 73, 3390–3392 (1998)

    Article  ADS  Google Scholar 

  58. M.P. Chowdhury, R.K. Roy, S.R. Bhattacharyya, A.K. Pal: Stress in polycrystalline GaN films prepared by R.F. Sputtering, Eur. Phys. J. B 48, 47–53 (2005)

    Article  ADS  Google Scholar 

  59. T. Venkatesan, K.S. Harshavardhan, M. Strikovski, J. Kim: Recent advances in the deposition of multi-component oxide films by pulsed energy deposition. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, New York 2005) pp. 385–413

    Chapter  Google Scholar 

  60. S. Ito, H. Fusioka, J. Ohta, H. Takahshi, M. Oshima: Effect of AlN. Buffer Layers on GaN/MnO Structure, Phys. Status Solidi (c) 0, 192–195 (2002)

    Article  Google Scholar 

  61. A.N. Redʼkin, V.I. Tatsii, Z.I. Makovei, A.N. Gruzintsev, E.E. Yakimov: Chemical vapor deposition of GaN from gallium and ammonium chloride, Inorg. Mater. 40, 1049–1053 (2004)

    Article  Google Scholar 

  62. P.R. Tavernier, P.M. Verghese, D.R. Clarke: Photoluminescence from laser assisted debonded epitaxial GaN and ZnO films, Appl. Phys. Lett. 74, 2678–2680 (1999)

    Article  ADS  Google Scholar 

  63. T. Miyazaki, K. Takada, S. Adachi, K. Ohtsuka: Properties of radio-frequency-sputter-deposited GaN films in a nitrogen/hydrogen mixed gas, J. Appl. Phys. 97, 093516–093518 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikhail D. Strikovski , Jeonggoo Kim or Solomon H. Kolagani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Strikovski, M.D., Kim, J., Kolagani, S.H. (2010). Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_35

Download citation

Publish with us

Policies and ethics