Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

It is generally accepted that tumor blood flow, microcirculation, oxygen and nutrient supply, tissue pH distribution, lactate levels, and the bioenergetic status— factors that are usually closely linked and that define the so-called pathophysiological microenvironment (“tumor pathophysiome”)—can markedly influence the therapeutic response of malignant tumors to conventional irradiation, chemotherapy, other non-surgical treatment modalities, malignant progression, and the cell proliferation activity within tumors. Currently available information on the parameters defining the pathophysiological micromilieu in human tumors is presented in this chapter. According to these data, significant variations in these relevant factors are likely to occur between different locations within a tumor and between tumors of the same grading and clinical staging. Therefore, evaluation of the pathophysiological microenvironment in individual tumors before therapy and a corresponding “fine-tuning” of treatment protocols for individual patients may result in an improved tumor response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam MF, Gabalski EC, Bloch DA, Oehlert JW, Brown JM, Elsaid AA, Pinto HA, Terris DJ (1999) Tissue oxygen distribution in head and neck cancer patients. Head Neck 21:146–153

    PubMed  CAS  Google Scholar 

  • Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, West C (2001) Glucose transporter Glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7:928–934

    PubMed  CAS  Google Scholar 

  • Aquino-Parsons C, Green A, Minchinton AI (2000) Oxygen tension in primary gynaecological tumours: The influence of carbon dioxide concentration. Radiother Oncol 57:45–51

    PubMed  CAS  Google Scholar 

  • Aquino-Parsons C, Luo C, Vikse CM, Olive PL (1999) Comparison between the comet assay and the oxygen microelectrode for measurement of tumor hypoxia. Radiother Oncol 51:179–185

    PubMed  CAS  Google Scholar 

  • Ariztia EV, Lee CJ, Gogoi R, Fishman DA (2006) The tumor microenvironment. Crit Rev Clin Lab Sci 43:393–425

    PubMed  CAS  Google Scholar 

  • Arnold JB, Junck L, Rottenberg DA (1985) In vivo measurement of regional brain and tumor pH using [14C]dimethyloxazolidinedione and quantitative autoradiography. J Cereb Blood Flow Metab 5:369–375

    PubMed  CAS  Google Scholar 

  • Ashby BS (1966) pH studies in human malignant tumours. Lancet 2:312–315

    PubMed  CAS  Google Scholar 

  • Baronzio G, Freitas I, Kwaan HC (2003) Tumor microenvironment and hemorheological abnormalities. Sem Thrombosis Hemostasis 29:489–497

    Google Scholar 

  • Becker A, Hänsgen G, Bloching M, Weigel C, Lautenschläger C, Dunst J (1998a) Oxygenation of squamous cell carcinoma of the head and neck: Comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 42: 35–41

    CAS  Google Scholar 

  • Becker A, Hänsgen G, Richter C, Dunst J (1998b) Oxygenierungsstatus von Plattenepithelkarzinomen der Kopf-Hals-Region. Strahlenther Onkol 174:484–486

    CAS  Google Scholar 

  • Becker A, Stadler P, Lavey RS, Hänsgen G, Kuhnt T, Lautenschläger C, Feldmann HJ, Molls M, Dunst J (2000) Severe anemia is associated with poor tumor oxygenation in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 46:459–466

    PubMed  CAS  Google Scholar 

  • Bentzen L, Keiding S, Nordsmark M, Falborg L, Hansen SB, Keller J, Nielsen OS, Overgaard J (2003) Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother Oncol 67:339–344

    PubMed  CAS  Google Scholar 

  • Beppu T, Kamada K, Yoshida Y, Arai H, Ogasawara K, Ogawa A (2002) Change of oxygen pressure in glioblastoma tissue under various conditions. J Neuro-Oncol 58:47–52

    Google Scholar 

  • Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK (1991) Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 51:6691–6694

    PubMed  CAS  Google Scholar 

  • Brahimi-Horn C, Pouyssegur J (2006) The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 93:E73–80

    PubMed  Google Scholar 

  • Bristow RG, Hill RP (2008) Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180–192

    PubMed  CAS  Google Scholar 

  • Brizel DM (1999) Human tumor oxygenation: The Duke University Medical Center Experience. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 29–38

    Google Scholar 

  • Brizel DM, Dodge RK, Clough RW, Dewhirst MW (1999) Oxygenation of head and neck cancer: Changes during radiotherapy and impact on treatment outcome. Radiother Oncol 53:113–117

    PubMed  CAS  Google Scholar 

  • Brizel DM, Rosner GL, Harrelson J, Prosnitz LR, Dewhirst MW (1994) Pretreatment oxygenation profiles of human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 30:635–642

    PubMed  CAS  Google Scholar 

  • Brizel DM, Rosner GL, Prosnitz LR, Dewhirst MW (1995) Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int J Radiat Oncol Biol Phys 32:1121–1125

    PubMed  CAS  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996a) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    CAS  Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Dodge RK, Charles HC, Samulski TV, Prosnitz LR, Dewhirst MW (1996b) Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res 56:5347–5350

    CAS  Google Scholar 

  • Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38:285–289

    PubMed  CAS  Google Scholar 

  • Bussink J (2000) The tumor microenvironment and effects of hypoxia modification. Proefschrift, Katholieke Universiteit, Nijmegen

    Google Scholar 

  • Butler TP, Grantham FH, Gullino PM (1975) Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res 35:3084–3088

    PubMed  CAS  Google Scholar 

  • Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61–70

    PubMed  CAS  Google Scholar 

  • Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64:2054–2061

    PubMed  CAS  Google Scholar 

  • Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908

    PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metast Rev 26:333–339

    CAS  Google Scholar 

  • Clavo B, Robaina F, Catalá L, Pérez JL, Camarés MA, Morera J, López L, Suárez G, Macías D, Rivero J, Hernández MA (2004) Effect of cervical spinal cord stimulation on regional blood flow and oxygenation in advanced head and neck tumours. Ann Oncol 15:802–807

    PubMed  CAS  Google Scholar 

  • Clavo B, Robaina F, Morera J, Ruiz-Egea E, Pérez JL, Macías D, Caramés MA, Catalá L, Hernández MA, Günderoth M (2002) Increase of brain tumor oxygenation during cervical spinal cord stimulation. J Neurosurg 96:94–100

    PubMed  Google Scholar 

  • Collingridge DR, Piepmeier JM, Rockwell S, Knisely JP (1999) Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 53:127–131

    PubMed  CAS  Google Scholar 

  • Cooper RA, Carrington BM, Loncaster JA, Todd SM, Davidson SE, Logue JP, Luthra AD, Jones AP, Stratford I, Hunter RD, West CML (2000) Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol 57:53–59

    PubMed  CAS  Google Scholar 

  • Cooper RA, West CM, Logue JP, Davidson SE, Miller A, Roberts S, Statford IJ, Honess DJ, Hunter RD (1999) Changes in oxygenation during radiotherapy in carcinoma of the cervix. Int J Radiat Oncol Biol Phys 45:119–126

    PubMed  CAS  Google Scholar 

  • Cruickshank GS, Rampling RP, Cowans W (1994) Direct measurement of the pO2 distribution in human malignant brain tumours. Adv Exp Med Biol 345:465–470

    PubMed  CAS  Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int J Cancer 107:1–10

    PubMed  CAS  Google Scholar 

  • Curti BD, Urba WJ, Alvord WG, Janik JE, Smith JW, Madara K, Longo DL (1993) Interstitital pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment. Cancer Res 53:2204–2207

    PubMed  CAS  Google Scholar 

  • Cvetkovic D, Movsas B, Dicker AP, Hanlon AL, Greenberg RE, Chapman JD, Hanks GE, Tricoli JV (2001) Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 57:821–825

    PubMed  CAS  Google Scholar 

  • Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman RB, Giacca AJ (2001) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–5914

    Google Scholar 

  • Dewhirst MW, Poulson JM, Yu D, Sanders L, Lora-Michiels M, Vujaskovic Z, Jones EL, Samulski TV, Powers BE, Brizel DM, Prosnitz LR, Charles HC (2005) Relation between pO2, 31P magnetic resonance spectroscopy parameters and treatment outcome in patients with high-grade soft tissue sarcomas treated with thermoradiotherapy. Int J Radiat Oncol Biol Phys 61:480–491

    PubMed  Google Scholar 

  • Di Martino EFN, Gagel B, Schramm O (2005) Evaluation of tumor oxygenation by color duplex sonography: A new approach. Otolaryngol Head Neck Surg 132:765–769

    PubMed  Google Scholar 

  • Dietz A, Rudat V, Conradt C, Vanselow B, Wollensack P, Staar S, Eckel H, Volling P, Schröder M, Wannenmacher M, Müller RP, Weidenauer H (2000) Prognostischer Stellenwert des Hämoglobinwertes vor primärer Radiochemotherapie von Kopf-Hals-Karzinomen. HNO 48:655–664

    PubMed  CAS  Google Scholar 

  • Dietz A, Vanselow B, Rudat V, Conradt C, Weidauer H, Kallinowski F, Dollner R (2003) Prognostic impact of reoxygenation in advanced cancer of the head and neck during initial course of chemoradiation or radiotherapy alone. Head Neck 25:50–58

    PubMed  Google Scholar 

  • Doll CM, Milosevic M, Pintilie M, Hill RP, Fyles AW (2003) Estimating hypoxic status in human tumors: A simulation using Eppendorf oxygen probe data in cervical cancer patients. Int J Radiat Oncol Biol Phys 55:1239–1246

    PubMed  Google Scholar 

  • Dunst J, Hänsgen G, Lautenschläger C, Fuchsel G, Becker A (1999) Oxygenation of cervical cancers during radiotherapy and radiotherapy + cis-retinoic acid/interferon. Int J Radiat Oncol Biol Phys 43:367–373

    PubMed  CAS  Google Scholar 

  • Dunst J, Kuhnt T, Strauss HG, Krause U, Pelz T, Koelbl H, Hänsgen G (2003a) Anemia in cervical cancers: Impact on survival, patterns of relapse, and association with hypoxia and angiogenesis. Int J Radiat Oncol Biol Phys 56:778–787

    Google Scholar 

  • Dunst J, Stadler P, Becker A, Lautenschläger C, Pelz T, Hänsgen G, Molls M, Kuhnt T (2003b) Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlenther Onkol 179:521–526

    Google Scholar 

  • Durand RE, Sham E (1998) The lifetime of hypoxic human tumor cells. Int J Radiat Oncol Biol Phys 42:711–715

    PubMed  CAS  Google Scholar 

  • Eble MJ, Lohr F, Wannenmacher M (1995) Oxygen tension distribution in head and neck carcinomas after peroral oxygen therapy. Onkologie 18:136–140

    Google Scholar 

  • Endrich B, Hammersen F, Goetz A, Messmer K (1982) Microcirculatory blood flow, capillary morphology, and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst 68:475–485

    PubMed  CAS  Google Scholar 

  • Evans SM, Hahn SM, Magarelli DP, Zhang PJ, Jenkins WT, Fraker DL, Hsi RA, McKenna WG, Koch CJ (2001) Hypoxia in human intraperitoneal and extremity sarcomas. Int J Radiat Oncol Biol Phys 49:587–596

    PubMed  CAS  Google Scholar 

  • Evans SM, Judy KD, Dunphy I, Jenkins WT, Hwang W-T, Nelson PT, Lustig RA, Jenkins K, Magarelli DP, Hahn SM, Collins RA, Grady MS, Koch CJ (2004a) Hypoxia is important in the biology and aggression of human glial brain tumors. Clin Cancer Res 10:8177–8184

    CAS  Google Scholar 

  • Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ (2004b) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64:1886–1892

    CAS  Google Scholar 

  • Falk SJ, Ward R, Bleehan NM (1992) The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerized pO2 histography. Br J Cancer 66:919–924

    PubMed  CAS  Google Scholar 

  • Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    PubMed  Google Scholar 

  • Fleckenstein W, Jungblut JR, Suckfüll M, Hoppe W, Weiss C (1988) Sauerstoffdruckverteilungen in Zentrum und Peripherie maligner Kopf-Hals-Tumoren. Dtsch Z Mund Kiefer GesichtsChir 12:205–211

    PubMed  CAS  Google Scholar 

  • Fukumura D, and Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    PubMed  CAS  Google Scholar 

  • Füller J, Feldmann HJ, Molls M, Sack H (1994) Untersuchungen zum Sauerstoffpartialdruck im Tumorgewebe unter Radio- und Thermoradiotherapie. Strahlenther Onkol 170:453–460

    PubMed  Google Scholar 

  • Fyles A, Milosevic M, Hedley D, Pintilie M, Levin W, Manchul L, Hill RP (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20:680–687

    PubMed  CAS  Google Scholar 

  • Fyles A, Milosevic M, Pintilie M, Syed A, Levin W, Manchul L, Hill RP (2006) Long-term performance of interstitial fluid pressure and hypoxia as prognostic factors in cervix cancer. Radiother Oncol 80:132–137

    PubMed  Google Scholar 

  • Fyles A, Milosevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane T, Hill RP (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Coia LR, Richter MP, Katz H, Moldofsky PJ, Engstrom P, Brown DQ, Brookland R, Broder GJ (1985) Oxygen tension in human tumors: In vivo mapping using CT-guided probes. Radiology 156:211–214

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Kessler HB, Rosenblum JS, Coia LR, Moldofsky PJ, Hartz WH, Broder GJ (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838

    PubMed  CAS  Google Scholar 

  • Gerweck LE (1998) Tumor pH: Implications for treatment and novel drug design. Sem Radiat Oncol 8:176–182

    CAS  Google Scholar 

  • Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6:46–58

    PubMed  Google Scholar 

  • Gillies RJ, Schornack PA, Secomb TW, Raghunand N (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197–207

    PubMed  CAS  Google Scholar 

  • Goode JA, Chadwick DJ (eds) (2001) The tumour microenvironment: Causes and consequences of hypoxia and acidity. Novartis Foundation Symposium 240. John Wiley & Sons, Chichester, New York

    Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    PubMed  CAS  Google Scholar 

  • Graffman S, Björk P, Ederoth P, Ihse I (2001) Polarographic pO2 measurements of intra-abdominal adenocarcinoma in connection with intraoperative radiotherapy before and after change of oxygen concentration of anaesthetic gases. Acta Oncol 40:105–107

    PubMed  CAS  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64:425–427

    PubMed  CAS  Google Scholar 

  • Griffiths JR, Cady E, Edwards RHT, McCready VR, Wilkie DR, Wiltshaw E (1983) 31P-NMR studies of a human tumour in situ. Lancet 1:1435–1436

    PubMed  CAS  Google Scholar 

  • Grischke EM, Kaufmann M, Eberlein-Gonska M, Mattfeld T, Sohn Ch, Bastert G (1994) Angiogenesis as a diagnostic factor in primary breast cancer: Microvessel quantitation by stereological methods and correlation with color Doppler sonography. Onkologie 17:35–42

    Google Scholar 

  • Groebe K, Vaupel P (1988) Evaluation of oxygen diffusion distances in human breast cancer xenografts using tumor-specific in vivo-data: Role of various mechanisms in the development of tumor hypoxia. Int J Radiat Oncol Biol Phys 15:691–697

    PubMed  CAS  Google Scholar 

  • Gullino PM (1970) Techniques for the study of tumor physiopathology. In: Busch H (ed) Methods in cancer research. Academic Press, New York, pp 45–91

    Google Scholar 

  • Gullino PM (1975) Extracellular compartments of solid tumors, In: Becker EF (ed) Cancer, vol 3. Plenum, New York, pp 327–354

    Google Scholar 

  • Gullino PM, Grantham FH, Smith SH, Haggerty AC (1965) Modifications of the acid-base status of the internal milieu of tumors. J Natl Cancer Inst 34:857–869

    PubMed  CAS  Google Scholar 

  • Gutmann R, Leunig M, Feyh J, Goetz AE, Messmer K, Kastenbauer E, Jain RK (1992) Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 52:1993–1995

    PubMed  CAS  Google Scholar 

  • Guyton AC, Hall JE (2006) Textbook of medical physiology, 11th edn. Elsevier, Philadelphia

    Google Scholar 

  • Haider MA, Milosevic M, Fyles A, Sitartchouk I, Yeung I, Henderson E, Lockwood G, Lee TY, Roberts TPL (2005) Assessment of the tumor microenvironment in cervix cancer using dynamic contrast enhanced CT, interstitial fluid pressure and oxygen measurements. Int J Radiat Oncol Biol Phys 62:1100–1107

    PubMed  Google Scholar 

  • Hänsgen G, Krause U, Becker A, Stadler P, Lautenschläger C, Wohlrab W, Rath FW, Molls, M, Dunst J (2001) Tumor hypoxia, p53, and prognosis in cervical cancers. Int J Radiat Oncol Biol Phys 50:865–872

    Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  • Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nature 4:806–813

    CAS  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    PubMed  CAS  Google Scholar 

  • Hill SA, Pigott KH, Saunders MI, Powell MEB, Arnold S, Obeid A, Ward G, Leahy M, Hoskin PJ, Chaplin DJ (1996) Microregional blood flow in murine and human tumours assessed using laser Doppler microprobes. Br J Cancer 74 (Suppl):S260–S263

    Google Scholar 

  • Hirst DG, Flitney FW (1997) The physiological importance and therapeutic potential of nitric oxide in the tumour-associated vasculature. In: Bicknell R, Lewis CE, Ferrara N (eds) Tumour angiogenesis. Oxford University Press, Oxford, pp 153–167

    Google Scholar 

  • Höckel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P (1993a) Intra-tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    Google Scholar 

  • Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P (1996a) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    Google Scholar 

  • Höckel M, Schlenger K, Höckel S, Aral B, Schäffer U, Vaupel P (1998) Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer 79:365–369

    PubMed  Google Scholar 

  • Höckel M, Schlenger K, Höckel S, Vaupel P (1999) Association between tumor hypoxia and malignant progression: The clinical evidence in cancer of the uterine cervix. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 65–74

    Google Scholar 

  • Höckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res 51:6098–6102

    PubMed  Google Scholar 

  • Höckel M, Schlenger K, Mitze M, Schäffer U, Vaupel P (1996b) Hypoxia and radiation response in human tumors. Semin Radiat Oncol 6:3–9

    Google Scholar 

  • Höckel M, Vaupel P (2001a) Tumor hypoxia: Definitions and current clinical, biologic and molecular aspects. J Natl Cancer Inst 93:266–276

    Google Scholar 

  • Höckel M, Vaupel P (2001b) Prognostic significance of tissue hypoxia in cervical cancer. CME J Gynecol Oncol 6:216–225

    Google Scholar 

  • Höckel M, Vaupel P (2003) Oxygenation of cervix cancers: Impact of clinical and pathological parameters. Adv Exp Med Biol 510:31–35

    PubMed  Google Scholar 

  • Höckel M, Vorndran B, Schlenger K, Baussmann E, Knapstein PG (1993b) Tumor oxygenation: A new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51:141–149

    Google Scholar 

  • Hohenberger P, Felgner C, Haensch W, Schlag PM (1998) Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Res Treat 48:97–106

    PubMed  CAS  Google Scholar 

  • Hossmann K-A, Mies G, Paschen W, Szabo L, Dolan E, Wechsler W (1986) Regional metabolism of experimental brain tumors. Acta Neuropathol 69:139–147

    PubMed  CAS  Google Scholar 

  • Hossmann KA, Niebuhr I, Tamura M (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cerebral Blood Flow Metab 2:25–32

    CAS  Google Scholar 

  • Jain RK (1994) Barrieren in Tumoren gegen Therapeutika. Spektrum der Wissenschaft. Septemberheft, pp 48–55

    Google Scholar 

  • Jones EL, Prosnitz LR, Dewhirst MW, Marcom PK, Hardenbergh PH, Marks LB, Brizel DM, Vujaskovic Z (2004) Thermoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res 10:4287–4293

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Buhr HJ (1995a) Can the oxygenation status of rectal carcinomas be improved by hypoxia? In: Vaupel P, Kelleher DK, Günderoth M (eds) Tumor oxygenation. Fischer, Stuttgart, Jena, New York, pp 291–296

    Google Scholar 

  • Kallinowski F, Buhr HJ (1995b) Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Günderoth M (eds) Tumor oxygenation. Fischer, Stuttgart, Jena, New York, pp 205–209

    Google Scholar 

  • Kallinowski F, Vaupel P (1988) pH distributions in spontaneous and isotransplanted rat tumors. Br J Cancer 58:314–321

    PubMed  CAS  Google Scholar 

  • Kayama T, Yoshimoto T, Fujimoto S, Sakurai Y (1991) Intratumoural oxygen pressure in malignant brain tumour. J Neurosurg 74:55–59

    PubMed  CAS  Google Scholar 

  • Kim CY, Tsai MH, Osmanian C, Graeber TG, Lee JE, Giffard RG, DiPaolo JA, Peehl DM, Giaccia AJ (1997) Selection of human cervical epithelial cells that possess reduced apoptotic potential to low oxygen conditions. Cancer Res 57:4200–4204

    PubMed  CAS  Google Scholar 

  • Kimura H, Braun RD, Ong ET, Hsu R, Secomb TW, Papahadjopoulos D, Hong K, Dewhirst M (1996) Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56:5522–5528

    PubMed  CAS  Google Scholar 

  • Knisely JPS, Rockwell S (2002) Importance of hypoxia in the biology and treatment of brain tumors. Neuroimag Clin N Am 12:525–536

    Google Scholar 

  • Knocke TH, Weitmann HD, Feldmann HJ, Selzer E, Pötter R (1999) Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53:99–104

    PubMed  CAS  Google Scholar 

  • Kondo A, Safaei R, Mishima M, Niedner H, Lin Y, Howell SB (2001) Hypoxia-induced enrichment and mutagenesis of cells that have lost DNA mismatch repair. Cancer Res 61:7603–7607

    PubMed  CAS  Google Scholar 

  • Konerding MA, Fait E, Gaumann A (2001) 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 84:1354–1362

    PubMed  CAS  Google Scholar 

  • Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922

    PubMed  CAS  Google Scholar 

  • Lally BE, Rockwell S, Fischer DB, Collingridge DR, Piepmeier JM, Knisely JP (2004) The interactions of polarographic measurements of oxygen tension and histological grade in human glioma and surrounding peritumoral brain tissue. Int J Radiat Oncol 60:S194

    Google Scholar 

  • Lartigau E, Randrianarivelo H, Avril M-F, Margulis A, Spatz A, Eschwege F, Guichard M (1997) Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 7:400–406

    PubMed  CAS  Google Scholar 

  • Lartigau E, Haie-Meder C, Cosset MF, Delapierre M, Gerbaulet A, Eschwege F, Guichard M (1992a) Feasibility of measuring oxygen tension in uterine cervix carcinoma. Eur J Cancer 28A:1354–1357

    CAS  Google Scholar 

  • Lartigau E, Le Ridant A-M, Lambin P, Weeger P, Martin L, Sigal R, Lusinchi A, Luboinski B, Eschwege F, Guichard M (1993) Oxygenation of head and neck tumors. Cancer 71:2319–2325

    PubMed  CAS  Google Scholar 

  • Lartigau E, Lusinchi A, Eschwege F, Guichard M (1999) Tumor oxygenation: The Gustave Roussy experience. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 47–52

    Google Scholar 

  • Lartigau E, Lusinchi A, Weeger P, Wibault P, Luboinski B, Eschwege F, Guichard M (1998) Variations in tumour oxygen tension (pO2) during accelerated radiotherapy of head and neck carcinoma. Eur J Cancer 34:856–861

    PubMed  CAS  Google Scholar 

  • Lartigau E, Martin L, Lambin P, Haie-Meder C, Gerbaulet A, Eschwege F, Guichard M (1992b) Mesure de la pression partielle en oxygène dans des tumeurs du col utérin. Bull Cancer/Radiother 79:199–206

    Google Scholar 

  • Lartigau E, Randrianarivelo H, Martin L, Stern S, Thomas CD, Guichard M, Weeger P, Le Ridant A-M, Luboinski B, Nguyen T, Ortoli J-C, Grange F, Avril M-F, Lusinchi A, Wibault P, Haie-Meder C, Gerbaulet A, Eschwege F (1994) Oxygen tension measurements in human tumors: The Institut Gustave-Roussy experience. Radiat Oncol Invest 1:285–291

    Google Scholar 

  • Lawrentschuk N, Poon AMT, Foo SS, Johns Putra LG, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 96:540–546

    PubMed  Google Scholar 

  • Le QT, Chen E, Salim A, Cao Hongbin, Kong CS, Whyte R, Donington J, Cannon W, Wakelee H, Tibshirani R, Mitchell JD, Richardson D, O’Byrne KJ, Koong AC, Giaccia AJ (2006) An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12:1507–1514

    PubMed  CAS  Google Scholar 

  • Le QT, Kovacs MS, Dorie MJ, Koong A, Terris DJ, Pinto HA, Goffinet DR, Nowels K, Bloch D, Brown JM (2003) Comparison of the comet assay and the oxygen microelectrode for measuring tumor oxygenation in head-and-neck cancer patients. Int J Radiat Oncol Biol Phys 56:375–383

    PubMed  Google Scholar 

  • Leo C, Giaccia AJ, Denko NC (2004) The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol 14:207–214

    PubMed  Google Scholar 

  • Leo C, Richter C, Horn L-C, Schütz A, Pilch H, Höckel M (2005) Expression of Apaf-1 in cervical cancer correlates with lymph node metastasis but not with intratumoral hypoxia. Gynecol Oncol 97:602–606

    PubMed  CAS  Google Scholar 

  • Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52:6371–6374

    PubMed  CAS  Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    PubMed  CAS  Google Scholar 

  • Ljungkvist ASE, Bussink J, Kaanders JHAM, Rijken PFJW, Begg AC, Raleigh JA, van der Kogel AJ (2005) Hypoxic cell turnover in different solid tumor lines. Int J Radiat Oncol Biol Phys 62:1157–1168

    PubMed  Google Scholar 

  • Lunt SJ, Kalliomaki TMK, Brown A, Yang VX, Milosevic M, Hill RP (2008) Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 8:2

    PubMed  Google Scholar 

  • Lyng H, Sundfør K, Tanum G, Rofstad EK (1997) Oxygen tension in primary tumours of the uterine cervix and lymph node metastases of the head and neck. Adv Exp Med Biol 428:55–60

    PubMed  CAS  Google Scholar 

  • Lyng H, Sundfør K, Trope C, Rofstad EK (2000) Disease control of uterine cervical cancer: relationships to tumor oxygen tension, vascular density, cell density, and frequency of mitosis and apoptosis measured before treatment and during radiotherapy. Clin Cancer Res 6:1104–1112

    PubMed  CAS  Google Scholar 

  • Lyng H, Vorren AO, Sundfør K, Taksdal I, Lien HH, Kaalhus O, Rofstad EK (2001) Intra- and intertumor heterogeneity in blood perfusion of human cervical cancer before treatment and after radiotherapy. Int J Cancer Radiat Oncol Invest 96:182–190

    CAS  Google Scholar 

  • Magagnin MG, Sergeant K, van den Beucken T, Rouschop KM, Jutten B, Seigneuric R, Lambin P, Devreese B, Koritzinsky M, Wouters BG (2007) Proteomic analysis of gene expression following hypoxia and reoxygenation reveals proteins involved in the recovery from endoplasmic reticulum and oxidative stress. Radiother Oncol 83:340–345

    PubMed  CAS  Google Scholar 

  • Martin L, Lartigau E, Weeger P, Lambin P, Le Ridant AM, Lusinchi A, Wibault P, Eschwege F, Luboinski B, Guichard M (1993) Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother Oncol 27:123–130

    PubMed  CAS  Google Scholar 

  • Mattern J, Kallinowski F, Herfarth C, Volm M (1996) Association of resistance-related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67:20–23

    PubMed  CAS  Google Scholar 

  • Mayer A, Höckel M, Vaupel P (2006) Endogenous hypoxia markers in locally advanced cancers of the uterine cervix: Reality or wishful thinking? Strahlenther Onkol 182:501–510

    PubMed  Google Scholar 

  • Mayer A, Höckel M, Wree A, Leo C, Horn L-C, Vaupel P (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68:4719–4726

    PubMed  CAS  Google Scholar 

  • Milosevic M, Fyles A, Haider M, Hedley D, Hill R (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure (IFP). Sem Radiat Oncol 14:249–258

    Google Scholar 

  • Milosevic M, Fyles A, Hedley D, Pintilie M, Levin W, Manchul L, Hill R (2001a) Interstitial fluid pressure predicts survival in patients with cervic cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61:6400–6405

    CAS  Google Scholar 

  • Milosevic M, Quirt I, Levin W, Fyles A, Manchul L, Chapman W (2001b) Intratumoral sickling in patient with cervix cancer and sickle trait: Effect on blood flow and oxygenation. Gynecol Oncol 83:428–431

    CAS  Google Scholar 

  • Milosevic MF, Fyles AW, Wong R, Pintilie M, Kavanagh M-C, Levin W, Manchul LA, Keane TJ, Hill RP (1998) Interstitial fluid pressure in cervical carcinoma. Cancer 82:2418–2426

    PubMed  CAS  Google Scholar 

  • Molls M, Feldmann HJ, Füller J (1994) Oxygenation of locally advanced recurrent rectal cancer soft tissue sarcoma and breast cancer. Adv Exp Med Biol 345:459–463

    PubMed  CAS  Google Scholar 

  • Molls M, Vaupel P (eds) (2000) Blood perfusion and microenvironment of human tumors. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Moringlane JR (1994) Measurement of oxygen partial pressure in brain tumors under stereotactic conditions. Adv Exp Med Biol 345:471–477

    PubMed  CAS  Google Scholar 

  • Movsas B, Chapman JD, Greenberg RE, Hanlon AL, Horwitz EM, Pinover WH, Stobbe C, Hanks GE (2000) Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer 89:2018–2024

    PubMed  CAS  Google Scholar 

  • Movsas B, Chapman JD, Hanlon AL, Horwitz EM, Greenberg RE, Stobbe C, Hanks GE, Pollack A (2002) Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: Preliminary findings. Urology 60:634–639

    PubMed  Google Scholar 

  • Movsas B, Chapman JD, Horwitz EM, Pinover WH, Greenberg RE, Hanlon AL, Iyer R, Hanks GE (1999) Hypoxic regions exist in human prostate carcinoma. Urology 53:11–18

    PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Walenta S (1993) Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single photon imaging. Histochem J 25:407–420

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Walenta S, Paschen W, Kallinowski F, Vaupel P (1988) Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting. J Natl Cancer Inst 80:842–848

    PubMed  CAS  Google Scholar 

  • Nathanson SD, Nelson L (1994) Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol 1:333–338

    PubMed  CAS  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: A review. NMR Biomed 5:303–324

    PubMed  CAS  Google Scholar 

  • Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: Implication for drug delivery. Cancer Res 55:5451–5458

    PubMed  CAS  Google Scholar 

  • Newell K, Franchi A, Pouyssegur J, Tannock I (1993) Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci USA 90:1127–1131

    PubMed  CAS  Google Scholar 

  • Newell K, Tannock I (1991) Regulation of intracellular pH and viability of tumor cells. Funktionsanal Biol Syst 20:219–234

    Google Scholar 

  • Nordsmark M, Alsner J, Keller J, Nielsen OS, Jensen OM, Horsman MR, Overgaard J (2001) Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075

    PubMed  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Overgaard J (1994) Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol 33:383–389

    PubMed  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24

    PubMed  Google Scholar 

  • Nordsmark M, Hover M, Keller J, Nielsen OS, Jensen OM, Overgaard J (1996a) The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 35:701–708

    CAS  Google Scholar 

  • Nordsmark M, Keller J, Nielsen OS, Lundorf E, Overgaard J (1997) Tumour oxygenation assessed by polarographic needle electrodes and bioenergetic status measured by 31P magnetic resonance spectroscopy in human soft tissue tumours. Acta Oncol 36:565–571

    PubMed  CAS  Google Scholar 

  • Nordsmark M, Loncaster J, Aquino-Parsons C, Chou SC, Ladekarl M, Havsteen H, Lindegaard JC, Davidson SE, Varia M, West C, Hunter R, Overgaard J, Raleigh JA (2003) Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol 67:35–44

    PubMed  Google Scholar 

  • Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 57:39–43

    PubMed  CAS  Google Scholar 

  • Nordsmark M, Overgaard J (2004) Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol 43:396–403

    PubMed  Google Scholar 

  • Nordsmark M, Overgaard M, Overgaard J (1996b) Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 41:31–39

    CAS  Google Scholar 

  • Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6:324–329

    PubMed  CAS  Google Scholar 

  • Parker C, Milosevic M, Toi A, Sweet J, Panzarella T, Bristow R, Catton C, Catton P, Crook J, Gospodarowicz M, McLean M, Warde P, Hill RP (2004) Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 58:750–757

    PubMed  Google Scholar 

  • Paschen W (1985) Regional quantitative determination of lactate in brain sections. A bioluminescent approach. J Cerebral Blood Flow Metab 5:609–612

    CAS  Google Scholar 

  • Paschen W, Djuricic B, Mies G, Schmidt-Kastner R, Linn F (1987) Lactate and pH in the brain: Association and dissociation in different pathophysiological states. J Neurochem 48:154–159

    PubMed  CAS  Google Scholar 

  • Pigott KH, Hill SA, Chaplin DJ, Saunders MI (1996) Microregional fluctuations in perfusion within human tumours detected using laser Doppler flowmetry. Radiother Oncol 40:45–50

    PubMed  CAS  Google Scholar 

  • Pitson G, Fyles A, Milosevic M, Wylie J, Pintilie M, Hill R (2001) Tumor size and oxygenation are independent predictors of nodal disease in patients with cervix cancer. Int J Radiat Oncol Biol Phys 51:699–703

    PubMed  CAS  Google Scholar 

  • Powell MEB, Collingridge DR, Saunders MI, Hoskin PJ, Hill SA, Chaplin DJ (1999) Improvement in human tumour oxygenation with carbogen of varying carbon dioxide concentrations. Radiother Oncol 50:167–171

    PubMed  CAS  Google Scholar 

  • Raab GH, Auer F, Scheich D, Molls M, Eiermann W (2002) Pretreatment intratumoral oxygen tension (pO2) is not predictive for response to primary systemic chemotherapy (PSC) in operable T2 breast cancer. ASCO-Meeting 2002, Abstract no. 1806

    Google Scholar 

  • Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29:427–431

    PubMed  CAS  Google Scholar 

  • Reinhold HS (1971) Improved microcirculation in irradiated tumours. Eur J Cancer 7:273–280

    PubMed  CAS  Google Scholar 

  • Reinhold HS (1987) Tumour microcirculation. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster, pp 448–457

    Google Scholar 

  • Reinhold HS, van den Berg-Blok A (1983) Vascularization of experimental tumours. Ciba Found Symp 100:100–119

    PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg-Blok AE (1987) Circulation physiology of tumors. In: Kallman RF (ed) Rodent tumor models in experimental cancer therapy. Pergamon Press, New York, pp 39–42

    Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757

    PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumour growth. Eur J Cancer 39:1835–1841

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Galappathi K, Mathiesen B, Ruud EB (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13:1971–1978

    PubMed  CAS  Google Scholar 

  • Rofstad EK, Sundfør K, Lyng H, Trope CG (2000) Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hxpoxia-induced radiation resistance rather than hypoxia induced metastasis. Br J Cancer 83:354–359

    PubMed  CAS  Google Scholar 

  • Roh HD, Boucher Y, Kalnicki S, Buchsbaum R, Bloomer WD, Jain RK (1991) Interstitial hypertension in carcinoma of uterine cervix patients: Possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695–6698

    PubMed  CAS  Google Scholar 

  • Rudat V, Stadler P, Becker A, Vanselow B, Dietz A, Wannenmacher M, Molls M, Dunst J, Feldmann HJ (2001) Predictive value of the tumor oxygenation by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther Onkol 177:462–468

    PubMed  CAS  Google Scholar 

  • Rudat V, Vanselow B, Wollensack P, Bettscheider C, Osman-Ahmet S, Eble MJ, Dietz A (2000) Repeatability and prognostic impact of the pretreatment pO2 histography in patients with advanced head and neck cancer. Radiother Oncol 57:31–37

    PubMed  CAS  Google Scholar 

  • Runkel S, Wischnik A, Teubner E, Kaven E, Gaa J, Melchert F (1994) Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized pO2 histography. Adv Exp Med Biol 345:451–458

    PubMed  CAS  Google Scholar 

  • Saumweber DM, Kau RJ, Arnold W (1995) Tumor tissue oxygenation in primary squamous cell carcinomas of the head and neck—Preliminary results. In: Vaupel P, Kelleher DK, Günderoth M (eds) Tumor oxygenation. Fischer, Stuttgart, Jena, New York, pp 313–318

    Google Scholar 

  • Scholbach T, Scholbach J, Krombach GA, Gagel B, Maneschi P, Di Martino E (2005) New method of dynamic color Doppler signal quantification in metastatic lymph nodes compared to direct polarographic measurements of tissue oxygenation. Int J Cancer 114:957–996

    PubMed  CAS  Google Scholar 

  • Semenza GL (2000) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103

    PubMed  CAS  Google Scholar 

  • Semenza GL (2002a) Involvement of hypoxia-inducible factor 1 in human cancer. Internal Med 41:79–83

    CAS  Google Scholar 

  • Semenza GL (2002b) HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    PubMed  CAS  Google Scholar 

  • Sevick EM, Jain RK (1989) Viscous resistance to blood flow in solid tumors: Effect of hematocrit on intratumor blood viscosity. Cancer Res 49:3513–3519

    PubMed  CAS  Google Scholar 

  • Shchors K, Evan G (2007) Tumor angiogenesis: Cause or consequence of cancer? Cancer Res 67:7059–7061

    PubMed  CAS  Google Scholar 

  • Sivridis E, Giatromanolaki A, Koukourakis MI (2003) The vascular network of tumours—what is it not for? J Pathol 201:173–180

    PubMed  Google Scholar 

  • Song CW, Lyons JC, Luo Y (1993) Intra- and extracellular pH in solid tumors: Influence on therapeutic response. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York, Basel, Hong Kong, pp 25–51

    Google Scholar 

  • Song CW, Park H, Ross BD (1999) Intra- and extracellular pH in solid tumors. In: Teicher BA (ed) Antiangiogenic agents in cancer therapy. Humana Press Inc, Totowa, pp 51–64

    Google Scholar 

  • Stadler P, Becker A, Feldmann HJ, Hänsgen G, Dunst J, Würschmidt F, Molls M (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749–754

    PubMed  CAS  Google Scholar 

  • Stadler P, Feldmann HJ, Creighton C, Kau R, Molls M (1998) Changes in tumor oxygenation during combined treatment with split-course radiotherapy and chemotherapy in patients with head and neck cancer. Radiother Oncol 48:57–164

    Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    PubMed  CAS  Google Scholar 

  • Stone HB, Brown JM, Phillips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Radiat Res 136:422–434

    PubMed  CAS  Google Scholar 

  • Stone JE, Parker R, Gilks CB, Stanbridge EJ, Liao SY, Aquino-Parsons (2005) Intratumoral oxygenation of invasive squamous cell carcinoma of the vulva is not correlated with regional lymph node metastasis. Eur J Gynaecol Oncol 26:31–35

    PubMed  CAS  Google Scholar 

  • Strnad V, Keilholz L, Kirschner M, Meyer M, Sauer R (1997) Sauerstoffdruckverteilung in Lymphknotenmetastasen und die Veränderungen während akuter respiratorischer Hypoxie. Strahlenther Onkol 173:267–271

    PubMed  CAS  Google Scholar 

  • Stubbs M (1999) Application of magnetic resonance techniques for imaging tumour physiology. Acta Oncol 38:845–853

    PubMed  CAS  Google Scholar 

  • Stubbs M, Bhujwalla ZM, Tozer GM, Rodrigues LM, Maxwell RJ, Morgan R, Howe FA, Griffiths JR (1992) An assessment of 31P-MRS as a method of measuring pH in rat tumours. NMR Biomed 5:351–359

    PubMed  CAS  Google Scholar 

  • Stubbs M, Griffiths JR (1999) Monitoring cancer by magnetic resonance. Br J Cancer 80 (Suppl 1):86–94

    PubMed  Google Scholar 

  • Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19

    PubMed  CAS  Google Scholar 

  • Sundfør K, Lyng H, Kongsgard U, Tropé C, Rofstad EK (1997) Polarographic measurement of pO2 in cervix carcinoma. Gynecol Oncol 64:230–236

    PubMed  Google Scholar 

  • Sundfør K, Lyng H, Rofstad EK (1998a) Oxygen tension and vascular density in adenocarcinoma and squamous cell carcinoma of the uterine cervix. Acta Oncol 37:665–670

    Google Scholar 

  • Sundfør K, Lyng H, Rofstad EK (1998b) Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78:822–827

    Google Scholar 

  • Sundfør K, Lyng H, Trope CG, Rofstad EK (2000) Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother Oncol 54:101–107

    PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240:177–184

    PubMed  CAS  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    PubMed  CAS  Google Scholar 

  • Terris DJ (2000) Head and neck cancer: The importance of oxygen. Laryngoscope 110:697–707

    PubMed  CAS  Google Scholar 

  • Thistlethwaite AJ, Leeper DB, Moylan DJ, Nerlinger RE (1985) pH distribution in human tumors. Int J Radiat Oncol Biol Phys 11:1647–1652

    PubMed  CAS  Google Scholar 

  • Toffoli S, Michiels C (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 275:2991–3002

    PubMed  CAS  Google Scholar 

  • Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    PubMed  Google Scholar 

  • Unger M, Weaver VM (2003) The tissue microenvironment as an epigenetic tumor modifier. Methods Mol Biol 223:315–347

    PubMed  CAS  Google Scholar 

  • van den Berg AP (1991) Tissue pH of human tumors and its variation upon therapy. Funktionsanal Biol Syst 20:235–255

    Google Scholar 

  • van den Berg AP, Wike-Hooley JL, van den Berg-Blok AE, van der Zee J, Reinhold HS (1982) Tumour pH in human mammary carcinoma. Eur J Cancer Clin Oncol 18:457–462

    PubMed  Google Scholar 

  • Vaupel P (1990) Oxygenation of human tumors. Strahlenther Onkol 166:377–386

    PubMed  CAS  Google Scholar 

  • Vaupel P (1992) Physiological properties of malignant tumours. NMR Biomed 5:220–225

    PubMed  CAS  Google Scholar 

  • Vaupel P (1993) Oxygenation of solid tumors. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York, pp 53–85

    Google Scholar 

  • Vaupel P (1994a) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Berlin: Ernst Schering Research Foundation, Lecture 23

    Google Scholar 

  • Vaupel P (1994b) Blood flow and metabolic microenvironment of brain tumors. J Neuro-Oncol 22:261–267

    CAS  Google Scholar 

  • Vaupel P (1998) Tumor blood flow. In: Molls M, Vaupel P (eds) Medical radiology—Diagnostic imaging and radiation oncology. Blood perfusion and microenvironment of human tumors. Springer, Berlin, Heidelberg, New York, pp 41–45

    Google Scholar 

  • Vaupel P (2001) Durchblutung und Oxygenierungsstatus von Kopf-Hals-Tumoren. In: Böttcher HD, Wendt TG, Henke M (eds) Klinik des Rezidivtumors im Kopf-Hals-Bereich. Zuckschwerdt, München, pp 7–23

    Google Scholar 

  • Vaupel P (2002) Durchblutung, Sauerstoffversorgung, Glukoseaufnahme und pH-Gradienten in Hirntumoren. In: Böttcher HD, Seifert V, Henke M, Mose St (eds) Klinik der hirneigenen Tumoren und Metastasen—Grundlagen, Diagnostik, Therapie. Zuckschwerdt, München, pp 34–49

    Google Scholar 

  • Vaupel P (2004a) The role of hypoxia-induced factors in tumor progression. Oncologist 9 (Suppl. 5):10–17

    CAS  Google Scholar 

  • Vaupel P (2004b) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Google Scholar 

  • Vaupel P (2006) Abnormal microvasculature and defective microcirculatory function in solid tumors. In: Siemann DW (ed) Vascular-targeted therapies in oncology. John Wiley & Sons, Chichester, UK, pp 9–29

    Google Scholar 

  • Vaupel P (2008) Strikingly high respiratory quotients: A further characteristic of the tumor pathophysiome. Adv Exp Med Biol 614:121–125

    PubMed  Google Scholar 

  • Vaupel P, Briest S, Höckel M (2002a) Hypoxia in breast cancer: Pathogenesis, characterization and biological/therapeutic implications. Wien Med Wschr 152:334–342

    CAS  Google Scholar 

  • Vaupel P, Dunst J, Engert A, Fandrey J, Feyer P, Freund M, Jelkmann W (2005) Effects of recombinant human erthropoietin (rHuEPO) on tumor control in patients with cancer-induced anemia. Onkologie 28: 216–221

    PubMed  CAS  Google Scholar 

  • Vaupel P, Grunewald WA, Manz R, Sowa W (1978) Intracapillary HbO2 saturation in tumor tissue of DS-carcinosarcoma during normoxia. Adv Exp Med Biol 94:367–375

    Google Scholar 

  • Vaupel P, Harrison L (2004) Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist 9 (Suppl. 5):4–9

    PubMed  Google Scholar 

  • Vaupel P, Höckel M (1999) Oxygenation status of breast cancer: The Mainz experience. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 1–11

    Google Scholar 

  • Vaupel P, Höckel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: Characterization and therapeutic relevance. Int J Oncol 17:869–879

    PubMed  CAS  Google Scholar 

  • Vaupel P, Höckel M (2001) Hypoxie beim Zervixkarzinom: Pathogenese, Charakterisierung und biologische/klinische Konsequenzen. Zentralbl Gynäkol 123: 192–197

    PubMed  CAS  Google Scholar 

  • Vaupel P, Höckel M (2004) Durchblutung, Oxygenierungsstatus und metabolisches Mikromilieu des Mammakarzinoms. Pathomechanismen, Charakterisierung und biologische/therapeutische Relevanz. In: Untch M, Sittek H, Bauerfeind I, Reiser M, Hepp H (eds) Diagnostik und Therapie des Mammakarzinoms—State of the Art. Zuckschwerdt, München, pp 347–367

    Google Scholar 

  • Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    PubMed  CAS  Google Scholar 

  • Vaupel P, Jain RK (eds) (1991) Tumor blood supply and metabolic microenvironment. Characterization and implications for therapy. Gustav Fischer, Stuttgart, New York

    Google Scholar 

  • Vaupel P, Kallinowski F (1987) Hemoconcentration of blood flowing through human tumor xenografts. Int J Microcirc Clin Exp 6:72

    Google Scholar 

  • Vaupel P, Kallinowski F, Groebe K (1988) Evaluation of oxygen diffusion distances in human breast cancer using inherent in vivo-data: Role of various pathogenetic mechanisms in the development of tumor hypoxia. Adv Exp Med Biol 222:719–726

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kelleher DK (eds) (1999) Tumor hypoxia. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Vaupel P, Kelleher DK, Engel T (1994b) Stable bioenergetic status despite substantial changes in blood flow and tissue oxygenation. Br J Cancer 69:46–49

    CAS  Google Scholar 

  • Vaupel P, Mayer A (2004) Erythropoietin to treat anaemia in patients with head and neck cancer. Lancet 363:992

    PubMed  Google Scholar 

  • Vaupel P, Mayer A (2005) Effects of anaemia and hypoxia on tumour biology. In: Bokemeyer C, Ludwig H (eds) Anaemia in Cancer, 2nd edn. Elsevier, Edinburgh, London, pp 47–66

    Google Scholar 

  • Vaupel P, Mayer A, Briest S, Höckel M (2003a) Oxygenation gain factor: A novel parameter characterizing the association between hemoglobin level and the oxygenation status of breast cancers. Cancer Res 63:7634–7637

    CAS  Google Scholar 

  • Vaupel P, Mayer A, Höckel M (2006a) Impact of hemoglobin levels on tumor oxygenation: the higher, the better? Strahlenther Onkol 182:63–71

    Google Scholar 

  • Vaupel P, Mayer A, Höckel M (2006b) Oxygenation status of primary and recurrent squamous cell carcinomas of the vulva. Eur J Gynaecol Oncol 27:142–146

    CAS  Google Scholar 

  • Vaupel P, Mueller-Klieser W (1983) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2:78–90

    Google Scholar 

  • Vaupel P, Schaefer C, Okunieff P (1994a) Intracellular acidosis in murine fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of lactate and total Pi. NMR Biomed 7:128–136

    CAS  Google Scholar 

  • Vaupel P, Schlenger K, Knoop M, Hoeckel M (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51:3316–3322

    PubMed  CAS  Google Scholar 

  • Vaupel P, Thews O, Höckel M (1997) Durchblutung, Oxygenierung, pH-Verteilung und bioenergetischer Status maligner Tumoren. Arzneimitteltherapie 15:319–327

    Google Scholar 

  • Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: Role of hypoxia and anemia. Med Oncol 18:243–259

    PubMed  CAS  Google Scholar 

  • Vaupel P, Thews O, Kelleher DK, Hoeckel M (1998) Current status of knowledge and critical issues in tumor oxygenation. Adv Exp Med Biol 454:591–602

    PubMed  CAS  Google Scholar 

  • Vaupel P, Thews O, Kelleher DK, Konerding MA (2003b) O2 extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues. Int J Oncol 22:795–798

    CAS  Google Scholar 

  • Vaupel P, Thews O, Mayer A, Höckel S, Höckel M (2002b) Oxygenation status of gynecologic tumors: What is the optimal hemoglobin level? Strahlenther Onkol 178:727–731

    Google Scholar 

  • Vaupel, P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    PubMed  CAS  Google Scholar 

  • Vordermark D, Brown JM (2003) Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol 179:801–811

    PubMed  Google Scholar 

  • Vujaskovic Z, Rosen EL, Blackwell KL, Jones EL, Brizel DM, Prosnitz LR, Samulski TV, Dewhirst MW (2003) Ultrasound guided pO2 measurement of breast cancer reoxygenation after neoadjuvant chemotherapy and hyperthermia treatment. Int J Hyperthermia 19:498–506

    PubMed  CAS  Google Scholar 

  • Walenta S, Chau T-V, Schroeder T, Lehr H-A, Kunz-Schughart LA, Fuerst A, Mueller-Klieser W (2003) Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists? J Cancer Res Clin Oncol 129:321–326

    PubMed  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: Mirror and motor of tumor malignancy. Sem Radiat Oncol 14:267–274

    Google Scholar 

  • Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150:409–415

    PubMed  CAS  Google Scholar 

  • Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    PubMed  CAS  Google Scholar 

  • Warburg O (1925) Über den Stoffwechsel der Carcinomzelle. Klin Wschr 4:534–536

    CAS  Google Scholar 

  • Warburg O (1930) The metabolism of tumours. A. Constable, London

    Google Scholar 

  • Weinberg RA (2008) Coevolution in the tumor microenvironment. Nat Genetics 40:494–495

    CAS  Google Scholar 

  • Weinmann M, Jendrossek V, Güner D, Goecke B, Belka C (2004) Cyclic exposure to hypoxia and reoxygenation selects for tumor cells with defects in mitochondrial apoptotic pathways. FASEB J 18:1906–1908

    PubMed  CAS  Google Scholar 

  • Weiss L, Hultborn R, Tveit E (1979) Blood flow characteristics in induced rat mammary neoplasia. Microvasc Res 17:S119

    Google Scholar 

  • Weitmann HD, Gustorff B, Vaupel P, Knocke TH, Pötter R (2003) Oxygenation status of cervical carcinomas before and during spinal anesthesia for application of brachytherapy. Strahlenther Onkol 179:633–640

    PubMed  Google Scholar 

  • Wheeler RH, Ziessman HA, Medvec BR, Juni JE, Thrall JH, Keyes JW, Pitt SR, Baker SR (1986) Tumor blood flow and systemic shunting in patients receiving intraarterial chemotherapy for head and neck cancer. Cancer Res 46:4200–4204

    PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, van den Berg AP, van der Zee J, Reinhold HS (1985) Human tumour pH and its variation. Eur J Cancer Clin Oncol 21:785–791

    PubMed  CAS  Google Scholar 

  • Wilson CBJH, Lammertsma AA, McKenzie CG, Sikora K, Jones T (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242:1–10

    PubMed  CAS  Google Scholar 

  • Wong RK, Fyles A, Milosevic M, Pintilie M, Hill RP (1997) Heterogeneity of polarographic oxygen tension measurements in cervix cancer: an evaluation of within and between tumor variability, probe position, and track depth. Int J Radiat Oncol Biol Phys 39:405–412

    PubMed  CAS  Google Scholar 

  • Young JS, Lumsden CE, Stalker AL (1950) The significance of the tissue pressure of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J Pathol Bacteriol 62:313–333

    PubMed  CAS  Google Scholar 

  • Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaupel, P. (2009). Pathophysiology of Solid Tumors. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics