Skip to main content

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

The heliosphere exists because of the presence of the solar wind, the expanding hot upper atmosphere (the corona) of the Sun, which excludes the local interstellar medium (LISM) from the vicinity of the Sun and planets. The size and boundaries of the heliosphere are determined through the interaction between the solar wind and the LISM. The internal properties, structure, and dynamics of the heliospheric medium are defined by spatial and temporal variability of the regions of origin of the solar wind in the solar corona. The variability of the solar wind leads to evolving, dynamic phenomena throughout the heliosphere on all spatial and temporal scales. The most important timescale is imposed by the approximately 11-year solar activity cycle and the approximately 22-year solar magnetic cycle (the Hale cycle). Regions of the origin and of the properties of the solar wind undergo considerable change on this 11-year timescale, the dominant parameter in the description of the global heliosphere. Due to the rotation of the Sun and the interaction of this rotation with the generation of the internal and external magnetic fields of the Sun, the 11-year periodicity is most significant in the heliosphere in the solar meridian, and thus as a function of heliolatitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axford, W. I., A. J. Dessler, and B. Gottlieb (1963), Termination of Solar Wind and Solar Magnetic Field, Astrophys. J., 137, 1268.

    Article  ADS  Google Scholar 

  • Biermann, L. (1951), Kometenschweife und solare Korpuskularstrahlung, Z. Astrophys., 29, 274–286.

    ADS  Google Scholar 

  • Chamberlain, J. W. (1960), Interplanetary gas II. Expansion of a model solar corona, Astrophys. J., 131, 47–56.

    Article  ADS  Google Scholar 

  • Chapman, S., and J. Bartels (1940), Geomagnetism, Oxford University Press.

    Google Scholar 

  • Davis, L. (1955), Interplanetary Magnetic Fields and Cosmic Rays, Phys. Rev., 109, 1440–1444.

    Article  ADS  Google Scholar 

  • Fisk, L. A. (2005), Journey into the Unknown Beyond, Science, 309(5743), 2015.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1946), Three Unusual Cosmic-Ray Increases Possibly due to Charged Particles from the Sun, Phys. Rev., 70, 771.

    Article  ADS  Google Scholar 

  • Forbush, S. E. (1954), World-Wide Cosmic-Ray Variations, 1837–1952, J. Geophys. Res., 59, 525.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J. (1968), Interplanetary Neutral Hydrogen and the Radius of the Heliosphere, Planet. Space Sci., 16, 783–793.

    Article  ADS  Google Scholar 

  • Izmodenov, V. V. (2004), The Heliospheric Interface: Models and Observations, in The Sun and the Heliosphere as an Integrated System (G. Poletto & S. T. Suess, eds.), pp. 23–64, Kluwer Academic Publishers.

    Google Scholar 

  • Lanzerotti, L. J., and M. Schulz (1969), Interaction between the Boundary of the Heliosphere and the Magnetosphere of Jupiter, Nature, 222, 1054.

    Article  ADS  Google Scholar 

  • Meyer, P., E. N. Parker, and J. A. Simpson (1956), Solar Cosmic Rays of February 1956 and Their Propagation through Interplanetary Space, Phys. Rev., 104, 768–783.

    Article  ADS  Google Scholar 

  • O’Gallagher, J. J. (1967), Cosmic-Ray Radial Density Gradient and Its Rigidity Dependence Observed at Solar Minimum on Mariner IV, Astrophys. J., 150, 675.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1958), Dynamics of the interplanetary gas and magnetic field, Astrophys. J., 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1963), Interplanetary Dynamical Processes, Interscience Publishers, New York.

    MATH  Google Scholar 

  • Simpson, J. A., and J. R. Wang (1967), Dimension of the Cosmic-Ray Modulation Region, Astrophys. J. Lett., 149, L73.

    Article  ADS  Google Scholar 

  • Simpson, J. A., B. Rossi, A. R. Hibbs, R. Jastrow, F. L. Whipple, T. Gold, E. Parker, N. Christofilos, and J. A. Van Allen (1959), Round table discussion, J. Geophys. Res., 64, 1691.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Balogh, A., Lanzerotti, L.J. (2008). The heliosphere: Its origin and exploration. In: The Heliosphere through the Solar Activity Cycle. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74302-6_1

Download citation

Publish with us

Policies and ethics