Skip to main content

Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

We present a multiscale, graph-based approach to 3D image analysis using diffusion wavelet bases, which were presented in [1].

Diffusion wavelets allow to obtain orthonormal bases of L 2 functions on graphs. This permits the study of classical wavelet algorithms (such as compression and denoising of functions in , , via nonlinear approximation) in this setting.

In this paper, we describe how this could be used in structure-preserving compression of image sequences, modelled as a whole as a weighted graph, as a first step towards structural spatiotemporal wavelet segmentation. We further discuss the possibilities for using this abstract approach in computer vision tasks.

Supported by the Austrian Science Fund under the grant FWF-P18716-N13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Comput. Harmon. Anal. 21(1), 53–94 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.W.: Geometric diffusion as a tool for harmonic analysis and structure definition of data: Multiscale methods. In: Proceedings PNAS, vol. 102, pp. 7432–7437 (2005)

    Google Scholar 

  3. DeVore, R.: Nonlinear Approximation. Acta Numerica, 51–150 (1998)

    Google Scholar 

  4. Donoho, D., Johnstone, I.: Minimax Estimation Via Wavelet Shrinkage. Ann. Stat. 26(3), 879–921 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chambolle, A., DeVore, R.A., Lee, N.-Y., Lucier, B.J.: Nonlinear Wavelet Image Processing: Variational Problems, Compression, and Noise Removal Through Wavelet Shrinkage. IEEE Trans. Image Process 7, 319–335 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Qiu, H., Hancock, E.R.: Robust Multi-body Motion Tracking using Commute Time Clustering. In: ECCV, pp. 160–173 (2006)

    Google Scholar 

  7. Luo, B., Hancock, E.R.: Structural graph matching using the EM algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1120–1136 (2001)

    Article  Google Scholar 

  8. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  9. Meila, M., Shi, J.: Learning Segmentation by Random Walks. In: NIPS, pp. 873–879 (2000)

    Google Scholar 

  10. Shi, J., Malik, J.: Motion Segmentation and Tracking Using Normalized Cuts. In: ICCV pp. 1154–1160 (1998)

    Google Scholar 

  11. Szlam, A.D., Maggioni, M., Coifman, R.R.: A general framework for adaptive regularization based on diffusion processes on graphs (2006)

    Google Scholar 

  12. Lafon, S., Keller, Y., Coifman, R.R.: Data Fusion and Multi-Cue Data Matching by Diffusion Maps. IEEE Trans. Pattern An. and Mach. Int. 28-11, 1784–1797 (2006)

    Article  Google Scholar 

  13. Chung, F.R.: Spectral Graph Theory. CMBS-AMS 92 (1997)

    Google Scholar 

  14. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. and Comp. Harm. Anal. 21, 5–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mallat, S.: Multiresolution Approximations and Wavelet Orthonormal Bases in . Trans. Amer. Math. Soc. 315, 69–87 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Führ, H., Wild, M.: Characterizing Wavelet Coefficient Decay of Discrete-Time Signals. Appl. and Comp. Harm. Anal. 20(2), 184–201 (2006)

    Article  MATH  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  18. Choi, H., Baraniuk, R.G.: Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans. Signal Process 101(92) (September 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wild, M. (2007). Nonlinear Approximation of Spatiotemporal Data Using Diffusion Wavelets. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics