Skip to main content

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 35))

Eukaryotic cells contain many types of ribonucleoproteins (RNPs) which are complexes formed by RNA molecules associated with proteins. The majority of these RNPs are in the nucleus and can be classified in two groups, the small nuclear RNPs (snRNPs) that function in the maturation of messenger RNAs, and the small nucleolar RNPs that reside in the cell nucleolus and are required for maturation of ribosomal RNAs. Although both types of RNPs function in two different fundamental processes, progress made during the last few years shows that their assembly requires similar protein components. This review focuses on the factors and mechanisms governing snRNPs and snoRNPs biogenesis as well as on the mechanisms implicated in the sorting of these RNPs to their intracellular destinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achsel T, Brahms H, Kastner B, Bacgi A, Wilm M, Lührmann R (1999) A doughnut-shaped heteromer of human Sm-like proteins binds to the 3 ¢-end of U6 snRNA, thereby facilitating  U4/U6 formation in vitro. EMBO J 18:5789-5802

    CAS  PubMed  Google Scholar 

  • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399-5410

    CAS  PubMed  Google Scholar 

  • Balakin A, Smith L, Fournier M (1996) The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823-834

    CAS  PubMed  Google Scholar 

  • Bordonné R (2000) Functional characterization of nuclear localization signals in yeast Sm proteins. Mol Cell Biol 20:7943-7954

    PubMed  Google Scholar 

  • Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Lührmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275:17122-17129

    CAS  PubMed  Google Scholar 

  • Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B¢ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7:1531-1542

    CAS  PubMed  Google Scholar 

  • Brown J, Clark G, Leader D, Simpson C, Lowe T (2001) Multiple snoRNA gene clusters from Arabidopsis. RNA 7:1817-1832

    CAS  PubMed  Google Scholar 

  • Burge C, Tuschl T, Sharp P (1999) Splicing of precursors to mRNA by the spliceosome. In: Gesteland R, Cech T, Atkins J (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 525-560

    Google Scholar 

  • Cahill N, Friend K, Speckmann W, Li Z, Terns R, Terns M, Steitz J (2002) Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. EMBO J 21:3816-3828

    CAS  PubMed  Google Scholar 

  • Camasses A, Bragado-Nilsson E, Martin R, Séraphin B, Bordonné R (1998) Interactions within the yeast Sm core complex: from proteins to amino acids. Mol Cell Biol 18:1956-1966

    CAS  PubMed  Google Scholar 

  • Cavaille J, Nicoloso M, Bachellerie J (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732-735

    CAS  PubMed  Google Scholar 

  • Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan C, Horsthemke B, Bachellerie J, Brosius J, Huttenhofer A (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci USA 97:14311-14316

    CAS  PubMed  Google Scholar 

  • Cavaille J, Vitali P, Basyuk E, Huttenhofer A, Bachellerie J (2001) A novel brain-specific box C/D small nucleolar RNA processed from tandemly repeated introns of a noncoding RNA gene in rats. J Biol Chem 276:26374-26383

    CAS  PubMed  Google Scholar 

  • Chanfreau G, Elela S, Ares M Jr, Guthrie C (1997) Alternative 3¢-end processing of U5 snRNA by RNAse III. Genes Dev 11:2741-2751

    CAS  PubMed  Google Scholar 

  • Chanfreau G, Rotondo G, Legrain P, Jacquier A (1998) Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J 17:3726-3737

    CAS  PubMed  Google Scholar 

  • Darzacq X, Jady B, Verheggen C, Kiss A, Bertrand E, Kiss T (2002) Cajal body-specific small nuclear RNAs: a novel class of 2 ¢-O-methylation and pseudouridylation guide RNAs. EMBO J 21:2746-2756

    CAS  PubMed  Google Scholar 

  • Dominski Z, Marzulff W (1999) Formation of the 3 ¢-end of histone mRNA. Gene 239:1-14

    CAS  PubMed  Google Scholar 

  • Fischer U, Lührmann R (1990) An essential role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249:786-790

    CAS  PubMed  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj I (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051-1060

    CAS  PubMed  Google Scholar 

  • Friesen W, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275:26370-26375

    CAS  PubMed  Google Scholar 

  • Friesen W, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001a) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7:1111-1117

    CAS  Google Scholar 

  • Friesen W, Paushkin S, Wyce A, Massenet S, Pesiridis G, van Duyne G, Rappsilber J, Mann M, Dreyfuss G (2001b) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21:8289-8300

    CAS  Google Scholar 

  • Frugier T, Nicole S, Cifuentes-Diaz C, Melki J (2002) The molecular bases of spinal muscular atrophy. Curr Opin Genet De 12:294-298

    CAS  Google Scholar 

  • Gall J (2000) Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16:273-300

    CAS  PubMed  Google Scholar 

  • Ganot P, Bortolin M, Kiss T (1997a) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799-809

    CAS  Google Scholar 

  • Ganot P, Caizergues-Ferrer M, Kiss T (1997b) The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev 11:941-956

    CAS  Google Scholar 

  • Ganot P, Jady B, Bortolin M, Darzacq X, Kiss T (1999) Nucleolar factors direct the 2 ¢-O-ribose methylation and pseudouridylation of U6 spliceosomal RNA. Mol Cell Biol 19:6906-6917

    CAS  PubMed  Google Scholar 

  • Gaspin C, Cavaille J, Erauso G, Bachellerie J (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895-906

    CAS  PubMed  Google Scholar 

  • Gottschalk A, Tang J, Puig O, Salgado J, Neubauer G, Colot H, Mann M, Séraphin B, Rosbash M, Lührmann R, Fabrizio P (1998) A comprehensive biochemical and genetic analysis of the yeast U1 snRNP reveals five novel proteins. RNA 4:374-393

    CAS  PubMed  Google Scholar 

  • Greider C, Blackburn E (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 24:887-898

    Google Scholar 

  • Hamm J, Darzynkiewicz E, Tahara S, Mattaj I (1990) The trimethylguanosine cap structure of U1 snRNA is a component of a bipartite nuclear targeting signal. Cell 62:569-577

    CAS  PubMed  Google Scholar 

  • Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne J, Caizergues-Ferrer M (1998) Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 19:7078-7090

    Google Scholar 

  • Hermann H, Fabrizio P, Raker V, Foulaki K, Hornig H, Brahms H, Lührmann R (1995) snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J 14:2076-2088

    CAS  PubMed  Google Scholar 

  • Huber J, Cronshagen U, Kadokura M, Marshallsay C, Wada T, Sekine M, Lührmann R (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17:4114-4126

    CAS  PubMed  Google Scholar 

  • Huber J, Dickmanns A, Lührmann R (2002) The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 156:467-479

    CAS  PubMed  Google Scholar 

  • Hughes J, Ares M Jr (1991) Depletion of U3 small nucleolar RNA inhibits cleavage in the 5 ¢ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J 10:4231-4239

    CAS  PubMed  Google Scholar 

  • Huttenhofer A, Kiefmann M, Meier-Ewert S, O’Brien J, Lehrach H, Bachellerie J, Brosius J (2001) RNomics: an experimental approach that identifies 201 candidates for novel, small, nonmessenger RNAs in mouse. EMBO J 20:2943-2953

    CAS  PubMed  Google Scholar 

  • Izaurralde E, Lewis J, Gamberi C, Jarmolowski A, McGuigan C, Mattaj I (1995) A cap-binding protein complex mediating U snRNA export. Nature 376:709-712

    CAS  PubMed  Google Scholar 

  • Jady B, Kiss T (2001) A small nucleolar guide RNA functions both in 2 ¢-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J 20:541-551

    CAS  PubMed  Google Scholar 

  • Jones K, Gorzynski K, Hales C, Fischer U, Badbanchi F, Terns R, Terns M (2001) Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem 276:38645-38651

    CAS  PubMed  Google Scholar 

  • Kambach C, Walke S, Young R, Avis J, de la Fortelle E, Raker V, Lührmann R, Li J, Nagai K (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96:375-387

    CAS  PubMed  Google Scholar 

  • Kass S, Tyc K, Steitz J, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897-908

    CAS  PubMed  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65:517-526

    CAS  PubMed  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Bachellerie J, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077-1088

    CAS  PubMed  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Kiss T (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797-807

    CAS  PubMed  Google Scholar 

  • Kufel J, Allmang C, Chanfreau G, Petfalski E, Lafontaine D, Tollervey D (2000) Precursors to the U3 small nucleolar RNA lack small nucleolar RNP proteins but are stabilized by La binding. Mol Cell Biol. 20:5415-5424

    CAS  PubMed  Google Scholar 

  • Lafontaine D, Tollervey D (1999) Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. RNA 5:455-467

    CAS  PubMed  Google Scholar 

  • Lafontaine D, Tollervey D (2000) Synthesis and assembly of the box C+D small nucleolar RNPs. Mol Cell Biol 20:2650-2659

    CAS  PubMed  Google Scholar 

  • Lafontaine D, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D (1998) The box H + ACA snoRNAs carry cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 12:527-537

    CAS  PubMed  Google Scholar 

  • Lange T, Gerbi S (2000) Transient nucleolar localization of U6 small nuclear RNA in Xenopus laevis oocytes. Mol Biol Cell 11:2419-2428

    CAS  PubMed  Google Scholar 

  • Lange T, Borovjagin A, Maxwell E, Gerbi S (1998) Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J 17:3176-3187

    CAS  PubMed  Google Scholar 

  • Lange T, Ezrokhi M, Amaldi F, Gerbi S (1999) Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. Mol Biol Cell 10:3877-3890

    CAS  PubMed  Google Scholar 

  • Leader D, Clark G, Watters J, Beven A, Shaw P, Brown J (1997) Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic presnoRNAs. EMBO J 16:5742-5751

    CAS  PubMed  Google Scholar 

  • Leung A, Lamond A (2002) In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. J Cell Biol 157:615-629

    CAS  PubMed  Google Scholar 

  • Lyman S, Gerace L, Baserga S (1999) Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. RNA 5:1597-1604

    CAS  PubMed  Google Scholar 

  • Massenet S, Motorin Y, Lafontaine D, Hurt E, Grosjean H, Branlant C (1999) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol 19:2142-2154

    CAS  PubMed  Google Scholar 

  • Massenet S, Pellizzoni L, Paushkin S, Mattaj I, Dreyfuss G (2002) The SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway. Mol Cell Biol 22:6533-6541

    CAS  PubMed  Google Scholar 

  • Mattaj I (1986) Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46:905-911

    CAS  PubMed  Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The nucleolar small RNAs. Annu Rev Biochem 35:897-934

    Google Scholar 

  • Mayes A, Verdone L, Legrain P, Beggs J (1999) Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J 18:4321-4331

    CAS  PubMed  Google Scholar 

  • Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11:1990-1994

    CAS  PubMed  Google Scholar 

  • Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472-478

    CAS  PubMed  Google Scholar 

  • Mitchell J, Cheng J, Collins K (1999) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3 ¢-end. Mol Cell Biol 19:567-576

    CAS  PubMed  Google Scholar 

  • Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonné R (2002) Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9:891-901

    CAS  PubMed  Google Scholar 

  • Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, Tazi J, Bordonné R (2003) Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, SMN. EMBO Rep 4:616-622

    CAS  Google Scholar 

  • Narayanan A, Speckmann W, Terns R, Terns M (1999a) Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol Biol Cell 10:2131-2147

    CAS  Google Scholar 

  • Narayanan A, Lukowiak A, Jady B, Dragon F, Kiss T, Terns R, Terns M (1999b) Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J 18:5120-5130

    CAS  Google Scholar 

  • Narayanan U, Ospina J, Frey M, Hebert M, Matera A (2002) SMN, the spinal muscular atrophy protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum Mol Genet 11:1785-1795

    CAS  PubMed  Google Scholar 

  • Ni J, Tien A, Fournier M (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565-573

    CAS  PubMed  Google Scholar 

  • Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274:814-824

    CAS  PubMed  Google Scholar 

  • Ohno M, Segref A, Bachi A, Wilm M, Mattaj I (2000) PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101:187-198

    CAS  PubMed  Google Scholar 

  • Omer A, Lowe T, Russell A, Ebhardt H, Eddy S, Dennis P (2000) Homologs of small nucleolar RNAs in Archaea. Science 288:517-522

    CAS  PubMed  Google Scholar 

  • Ooi S, Samarsky D, Fournier M, Boeke J (1998) Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4:1096-1110

    CAS  PubMed  Google Scholar 

  • Pannone B, Xue D, Wolin S (1998) A role for the yeast La protein in U6 snRNP assembly: evidence that the La protein is a molecular chaperone for RNA polymerase III transcripts. EMBO J 17:7442-7453

    CAS  PubMed  Google Scholar 

  • Paushkin S, Gubitz A, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305-312

    CAS  PubMed  Google Scholar 

  • Pelczar P, Filipowicz W (1998) The host gene for intronic U17 small nucleolar RNAs in mammals has no protein-coding potential and is a member of the 5 ¢-terminal oligopyrimidine gene family. Mol Cell Biol 18:4509-4518

    CAS  PubMed  Google Scholar 

  • Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615-624

    CAS  PubMed  Google Scholar 

  • Pellizzoni L, Baccon J, Charroux B, Dreyfuss G (2001) The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 11:1079-1088

    CAS  PubMed  Google Scholar 

  • Petfalski E, Dandekar T, Henry Y, Tollervey D (1998) Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol 18:1181-1189

    CAS  PubMed  Google Scholar 

  • Pillai R, Will C, Lührmann R, Schumperli D, Muller B (2001) Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J 20:5470-5479

    CAS  PubMed  Google Scholar 

  • Plessel G, Fischer U, Lührmann R (1994) m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Mol Cell Biol 14:4160-4172

    CAS  PubMed  Google Scholar 

  • Raker V, Plessel G, Lührmann R (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15:2256-2269

    CAS  PubMed  Google Scholar 

  • Reddy R, Busch H (1988) Small nuclear RNAs: RNA sequences, structure, and modifications. In: Birnstiel ML (ed) Structure and function of major and minor nuclear ribonucleoprotein particles. Springer, Berlin Heidelberg New York, pp 1-37

    Google Scholar 

  • Ryan D, Stevens S, Abelson J (2002) The 5 ¢ and 3 ¢ domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region. RNA 8:1011-1033

    CAS  PubMed  Google Scholar 

  • Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Séraphin B (1999) Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 18:3451-3462

    CAS  PubMed  Google Scholar 

  • Samarsky D, Fournier M (1999) A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res 27:161-164

    CAS  PubMed  Google Scholar 

  • Samarsky D, Fournier M, Singer R, Bertrand E (1998) The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J 17:3747-3757

    CAS  PubMed  Google Scholar 

  • Schimmang T, Tollervey D, Kern H, Frank R, Hurt E (1989) A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J 8:4015-4024

    CAS  PubMed  Google Scholar 

  • Segault V, Will C, Sproat B, Lührmann R (1995) In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J 14:4010-4021

    CAS  PubMed  Google Scholar 

  • Seipelt R, Zheng B, Asuru A, Rymond B (1999) U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. Nucleic Acids Res 27:587-595

    CAS  PubMed  Google Scholar 

  • Seraphin B (1995) Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J 14:2089-2098

    CAS  PubMed  Google Scholar 

  • Seto A, Zaug A, Sobel S, Wolin S, Cech T (1999) Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 40:177-180

    Google Scholar 

  • Sleeman J, Lamond A (1999) Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol 9:1065-1074

    CAS  PubMed  Google Scholar 

  • Smith C, Steitz J (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5 ¢-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18:6897-6909

    CAS  PubMed  Google Scholar 

  • Stade K, Ford C, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041-1050

    CAS  PubMed  Google Scholar 

  • Steinmetz E, Conrad N, Brow D, Corden J (2001) RNA-binding protein Nrd1 directs poly(A)independent 3 ¢-end formation of RNA polymerase II transcripts. Nature 413:327-331

    CAS  PubMed  Google Scholar 

  • Terns M, Grimm C, Lund E, Dahlberg J (1995) A common maturation pathway for small nucleolar RNAs. EMBO J 14:4860-4871

    CAS  PubMed  Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt E (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443-457

    CAS  PubMed  Google Scholar 

  • Toro I, Thore S, Mayer C, Basquin J, Séraphin B, Suck D (2001) RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J 20:2293-2303

    CAS  PubMed  Google Scholar 

  • Toro I, Basquin J, Teo-Dreher H, Suck D (2002) Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus. J Mol Biol 320:129-142

    PubMed  Google Scholar 

  • Tyc K, Steitz J (1989) U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J 8:3113-3119

    CAS  PubMed  Google Scholar 

  • Tycowski K, Shu M, Steitz J (1996) A mammalian gene with introns instead of exons generating stable RNA products. Nature 379:464-466

    CAS  PubMed  Google Scholar 

  • Tycowski K, You Z, Graham P, Steitz J (1998) Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell 2:629-638

    CAS  PubMed  Google Scholar 

  • Urlaub H, Raker V, Kostka S, Lührmann R (2001) Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20:187-196

    CAS  PubMed  Google Scholar 

  • Valadkhan S, Manley J (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413:701-707

    CAS  PubMed  Google Scholar 

  • Verheggen C, Mouaikel J, Thiry M, Blanchard J, Tollervey D, Bordonne R, Lafontaine D, Bertrand E (2001) Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J 20:5480-5490

    CAS  PubMed  Google Scholar 

  • Verheggen C, Lafontaine D, Samarsky D, Mouaikel J, Blanchard J, Bordonné R, Bertrand E (2002) Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J 21:2736-2745

    CAS  PubMed  Google Scholar 

  • Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R (2000) Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell 6:1331-1342

    CAS  PubMed  Google Scholar 

  • Villa T, Ceradini F, Presutti C, Bozzoni I (1998) Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities. Mol Cell Biol 18:3376-3383

    CAS  PubMed  Google Scholar 

  • Watkins N, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Lührmann R (1998) cbf5p, a potential pseudouridine synthase and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549-1568

    CAS  PubMed  Google Scholar 

  • Watkins N, Segault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Lührmann R (2000) A common core RNP structure shared between the small nucleolar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457-466

    CAS  PubMed  Google Scholar 

  • Watkins N, Dickmanns A, Lührmann R (2002) Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5 K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 22:8342-8352

    CAS  PubMed  Google Scholar 

  • Will C, Lührmann R (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13:290-301

    CAS  PubMed  Google Scholar 

  • Wong J, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4:731-736

    CAS  PubMed  Google Scholar 

  • Wu P, Brockenbrough J, Metcalfe A, Chen S, Aris J (1998) Nop5p is a small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast. J Biol Chem 273:16453-16463

    CAS  PubMed  Google Scholar 

  • Xue D, Rubinson D, Pannone B, Yoo C, Wolin S (2000) U snRNP assembly in yeast involves the La protein. EMBO J 19:1650-1660

    CAS  PubMed  Google Scholar 

  • Yu Y, Shu M, Steitz J (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J 17:5783-5795

    CAS  PubMed  Google Scholar 

  • Zebarjadian Y, King T, Fournier M, Clarke L, Carbon J (1999) Point mutations in yeast cbf5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol 19:7461-7472

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertrand, E., Bordonné, R. (2008). Assembly and Traffic of Small Nuclear RNPs. In: Jeanteur, P. (eds) RNA Trafficking and Nuclear Structure Dynamics. Progress in Molecular and Subcellular Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74266-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74266-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74265-4

  • Online ISBN: 978-3-540-74266-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics