Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4682))

Included in the following conference series:

Abstract

Inspired by the behaviour of biological receptive fields and the human visual system, a network model based on spiking neurons is proposed to detect edges in a visual image. The structure and the properties of the network are detailed in this paper. Simulation results show that the network based on spiking neurons is able to perform edge detection within a time interval of 100 ms. This processing time is consistent with the human visual system. A firing rate map recorded in the simulation is comparable to Sobel and Canny edge graphics. In addition, the network can separate different edges using synapse plasticity, and the network provides an attention mechanism in which edges in an attention area can be enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hosoya, T., Baccus, S.A., Meister, M.: Dynamic Predictive Coding by The Retina. Nature 436, 71–77 (2005)

    Article  Google Scholar 

  2. Kandel, E.R., Shwartz, J.H.: Principles of Neural Science. Edward Amold (Publishers) Ltd (1981)

    Google Scholar 

  3. Hodgkin, A., Huxley, A.: A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. Journal of Physiology 117, 500–544 (1952)

    Google Scholar 

  4. Neuron Software download website: http://neuron.duke.edu/

  5. Knoblauch, A., Palm, G.: Scene Segmentation by Spike Synchronization in Reciprocally Connected Visual Areas. I. Local Effects of Cortical Feedback, Biol Cybern. 87, 67–151 (2002)

    Google Scholar 

  6. Knoblauch, A., Palm, G.: Scene Segmentation by Spike Synchronization in Reciprocally Connected Visual Areas. II. Global Assemblies and Synchronization on Larger Space and Time Scales. Biol Cybern. 87, 84–168 (2002)

    Google Scholar 

  7. Chen, K., Wang, D.L.: A Dynamically Coupled Neural Oscillator Network for Image Segmentation. Neural Networks 15(3), 423–439 (2002)

    MATH  Google Scholar 

  8. Purushothaman, G., Patel, S.S., Bedell, H.E., Ogmen, H.: Moving Ahead Through Differential Visual Latency. Nature 396, 424–424 (1998)

    Article  Google Scholar 

  9. Choe, Y., Miikkulainen, R.: Contour Integration and Segmentation in A Self-organizing Map of Spiking Neurons. Biological Cybernetics 90(2), 75–88 (2004)

    Article  MATH  Google Scholar 

  10. Borisyuk, R.M., Kazanovich, Y.B.: Oscillatory Model of Attention-guided Object Selection and Novelty Detection. Neural Networks 17(7), 899–915 (2004)

    Article  MATH  Google Scholar 

  11. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)

    Google Scholar 

  12. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, Cambridge, Massachusetts (2001)

    MATH  Google Scholar 

  13. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, pulations, Plasticity. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  14. Müller, E.: Simulation of High-Conductance States in Cortical Neural Networks, Masters thesis, University of Heidelberg, HD-KIP-03-22 (2003)

    Google Scholar 

  15. Wu, Q.X., McGinnity, T.M., Maguire, L.P., Glackin, B., Belatreche, A.: Learning Mechanism in Networks of spiking Neurons. Studies in Computational Intelligence 35, 171–197 (2006)

    Article  MATH  Google Scholar 

  16. Wu, Q.X., McGinnity, T.M., Maguire, L.P., Belatreche, A., Glackin, B.: Adaptive Co-Ordinate Transformation Based on Spike Timing-Dependent Plasticity Learning Paradigm. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 420–429. Springer, Heidelberg (2005)

    Google Scholar 

  17. Abbott, L.F., Regehr, W.G.: Synaptic Computation. Nature 431, 796–803 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q., McGinnity, M., Maguire, L., Belatreche, A., Glackin, B. (2007). Edge Detection Based on Spiking Neural Network Model. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74205-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74201-2

  • Online ISBN: 978-3-540-74205-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics