Skip to main content

Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging

  • Chapter
Single Molecules and Nanotechnology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 12))

Coming from the electronic material sciences, semiconductor nanocrystals, called quantum dots (QDs), have emerged as new powerful fluorescent probes for in vitro and in vivo biological labeling and single-molecule experiments. QDs possess several unique optical properties that make them very attractive over conventional fluorescent dyes and genetically encoded proteins technologies. They have precise emission color tunability by size due to quantum confinement effects, better photostability and brightness, wide absorption band and very narrow emission band for multiplexing, and increased fluorescence lifetimes. These characteristics, combined with some dramatic progresses achieved in surface chemistry, biocompatibility and targeting strategies have allowed their recent advances in the field of single-molecule detection and imaging using diverse microscope geometries like confocal microscopy, total internal reflection (TIR) microscopy or basic wide-field epifluorescence microscopy. This chapter reviews the basic principles of QDs' electronic structure necessary to understand their fundamental optical and physical properties and goes on to present recent QDs' uses in biological imaging with an emphasis on single-molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe E (1873) Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. f. Mikroskop. Anat. 9: 413–420.

    Article  Google Scholar 

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, and Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99 (20): 12617–12621.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Alivisatos AP (1996a) Semiconductor clusters, nanocrystals, and quantum dots. Science 271 (5251): 933–937.

    Article  CAS  ADS  Google Scholar 

  • Alivisatos AP (1996b) Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.100 (31): 13226–13239.

    Article  CAS  Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22 (1): 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Ambrose WP and Moerner WE (1991) Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal. Nature 349: 225–227.

    Article  CAS  ADS  Google Scholar 

  • Ashoori RC (1996) Electrons in artificial atoms. Nature 379: 413–419.

    Article  CAS  ADS  Google Scholar 

  • Atkins PW and Friedman RS (1997) Molecular Quantum Mechanics. Oxford University Press, New York.

    Google Scholar 

  • Axelrod D (2003) Total internal reflection fluorescence microscopy in cell biology. Meth. Enzymol. 361: 1–33.

    Article  PubMed  CAS  Google Scholar 

  • Bailey B, Farkas DL, Taylor DL, and Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366 (6450): 44–48.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, and Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15 (1): 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Banin U, Bruchez M, Alivisatos AP, Ha T, Weiss S, and Chemla DS (1999) Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. J. Chem. Phys. 110 (2): 1195–1201.

    Article  CAS  ADS  Google Scholar 

  • Basché T, Moerner WE, Orrit M, and Talon H (1992) Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69: 1516–1519.

    Article  PubMed  ADS  Google Scholar 

  • Bentolila LA and Weiss S (2006) Single-step multicolor fluorescent in situ hybridization analysis using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys. 45 (1): 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Betzig E and Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262: 1422–1425.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Betzig E and Trautman JK (1992) Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257: 189–195.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Bobroff N (1986) Position measurement with a noise-limited instrument. Rev. Sci. Instrum. 57 (6): 1152–1157.

    Article  ADS  Google Scholar 

  • Böer KW (1990) Survey of Semiconductor Physics. Electrons and Other Particles in Bulk Semiconductors. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Bowen Katari JEB, Colvin VL, and Alivisatos AP (1994) X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98: 4109–4117.

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2015.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80 (9): 4403–9.

    Article  CAS  ADS  Google Scholar 

  • Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, and Sealfon SC (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33 (18): e161.

    Article  PubMed  Google Scholar 

  • Chan WCW and Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 (5385): 2016–2018.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, and West JL (2005) Protease-activated quantum dot probes. Biochem. Biophys. Res. Commun. 334 (4): 1317–1321.

    Article  PubMed  CAS  Google Scholar 

  • Chen F and Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4: 1827–1832.

    Article  CAS  ADS  Google Scholar 

  • Cobbett CS (2001) Heavy metal detoxification in plants: Phytochelatin biosynthesis and function. Iubmb Life 51 (3): 183–188.

    Article  CAS  Google Scholar 

  • Crut A, Geron-Landre B, Bonnet I, Bonneau S, Desbiolles P, and Escude C (2005) Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res. 33 (11): e98.

    Article  PubMed  Google Scholar 

  • Dabbousi RO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, and Bawendi MG (1997) (CdSe) ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101: 9463–9475.

    Article  CAS  Google Scholar 

  • Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP, Sauer M, and Weiss S (2001) Time-gated biological imaging by use of colloidal quantum dots. Optics Lett. 26 (11): 825–827.

    Article  CAS  ADS  Google Scholar 

  • Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, and Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302 (5644): 442–445.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Dameron CT and Winge DR (1990a) Characterization of peptide-coated cadmium-sulfide crystallites. Inorg. Chem. 29 (7): 1343–1348.

    Article  CAS  Google Scholar 

  • Dameron CT and Winge DR (1990b) Peptide-mediated formation of quantum semiconductors. Trends Biotechnol. 8 (1): 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, J. CP, Steigerwald ML, Brus LE, and Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597.

    Article  CAS  ADS  Google Scholar 

  • Derfus AM, Chan WCW, and Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16 (12): 961–966.

    Article  CAS  Google Scholar 

  • Doose S, Tsay JM, Pinaud F, and Weiss S (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal. Chem. 77 (7): 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, and Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298 (5599): 1759–1762.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Dyba M and Hell SW (2002) Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88 (16): 163901.

    Article  PubMed  ADS  Google Scholar 

  • Efron B and Tibshirani RJ (1994) An Introduction to the Bootstrap. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Efros AL and Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16 (7): 1209–1214.

    CAS  Google Scholar 

  • Efros AL and Rosen M (2000) The electronic structure of semiconductor nanocrystals. Ann. Rev. Mat. Sci. 30: 475–521.

    Article  CAS  ADS  Google Scholar 

  • Egner A and Hell SW (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15 (4): 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Ekimov AI and Onuschenko AA (1982) Quantum size effect in the optical spectra of semiconductor microcrystals. Sov. Phys. Semicond. 16 (7): 1215–1219.

    CAS  Google Scholar 

  • Ekimov AI, Onuschenko AA, and Tsekhomskii VA (1980) Exciton light absorption by CuCl microcrystals in glass matrix. Sov. Glass Phys. Chem. 6: 511–512.

    CAS  Google Scholar 

  • Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI, Nozik AJ, Shabaev A, and Efros AL (2005) Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5 (5): 865–871.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Empedocles S and Bawendi M (1999) Spectroscopy of single CdSe nanocrystallites. Accounts Chem. Res. 32 (5): 389–396.

    Article  CAS  Google Scholar 

  • Empedocles SA, Neuhauser R, Shimizu K, and Bawendi MG (1999) Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11: 1243–1256.

    Article  CAS  Google Scholar 

  • Enderle T, Ha T, Ogletree DF, Chemla DS, Magowan C, and Weiss S (1997) Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Proc Natl Acad Sci U S A 94 (2): 520–525.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Eychmüller A, Mews A, and Weller H (1993) A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208: 59–62.

    Article  ADS  Google Scholar 

  • Feynman, R. (1961) in Miniaturization, ed. Gilbert, HD, Reinhold, New York, 282–296.

    Google Scholar 

  • Forkey JN, Quinlan ME, Shaw MA, Corrie JE, and Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422 (6930): 399–404.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Frohn JT, Knapp HF, and Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc Natl Acad Sci U S A 97 (13): 7232–7236.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Funatsu T, Harada Y, Tokunaga M, Saito K, and Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374 (6522): 555–559.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gao X, Chan WCW, and Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J. Biomed. Opt. 7 (4): 532–537.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LWK, and Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22: 969.

    Article  CAS  Google Scholar 

  • Gaponenko SV (1998) Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, and Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106: 7177–7185.

    Article  CAS  Google Scholar 

  • Gelles J, Schnapp BJ, and Sheetz MP (1988) Tracking kinesin-driven movements with nanometer scale precision. Nature 331: 450–453.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, and Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105 (37): 8861–8871.

    Article  CAS  Google Scholar 

  • Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, and Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74 (4): 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Goulian M and Simon SM (2000) Tracking single proteins within cells. Biophys. J. 79: 2188–2198.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Guo W, Li JJ, Wang YA, and Peng XG (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 15 (16): 3125–3133.

    Article  CAS  Google Scholar 

  • Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102 (37): 13081–6.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Gustafsson MG, Agard DA, and Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195 (Pt 1): 10–16.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  • Hannay NB (1959) Semiconductor. Reinhold, New York.

    Google Scholar 

  • Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, and Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J. 81 (5): 2639–2646.

    Article  PubMed  CAS  Google Scholar 

  • Hell SW (2003) Toward fluorescence nanoscopy. Nature Biotechnol. 21 (11): 1347–1355.

    Article  CAS  Google Scholar 

  • Hell SW and Stelzer EHK (1992) Properties of a 4Pi confocal fluorescence microscope. J. Optic. Soc. Amer. 9: 2159–2166.

    Article  ADS  Google Scholar 

  • Hines MA and Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100 468–471.

    Article  CAS  Google Scholar 

  • Hirschfeld T (1976) Optical microscopic observation of single small molecules. Appl. Optics 15 (12): 2965–2966.

    Article  CAS  ADS  Google Scholar 

  • Hofmann M, Eggeling C, Jakobs S, and Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 102 (49): 17565–17569.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hohng S and Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126 (5): 1324–5.

    Article  PubMed  CAS  Google Scholar 

  • Howarth M, Takao K, Hayashi Y and Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102 (21): 7583–7588.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Hu J, Li L, Yang W, Manna L, Wang L, and Alivisatos AP (2001) Linearly polarized emission from colloidal semiconductor quantum rods. Science 292 (5524): 2060–3.

    Article  PubMed  CAS  Google Scholar 

  • Iino R, Koyama I and Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80 (6): 2667–2677.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, and Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21 (1): 47–51.

    Article  CAS  Google Scholar 

  • Kadavanich A, V., Kippeny TC, Erwin MM, Pennycook SJ and Rosenthal SJ (2001) Sublattice resolution structural and chemical analysis of individual CdSe nanocrystals using atomic number contrast scanning transmission electron microscopy and electron energy loss spectroscopy. J. Phys. Chem. B 105 361–369.

    Article  CAS  Google Scholar 

  • Kapanidis A and Weiss S (2002) Fluorescent probes and bioconjugation chemsitries for single-molecule fluorescence analysis of biomolecules. J. Chem. Phys. 117 10953–10964.

    Article  CAS  ADS  Google Scholar 

  • Kellermayer MS (2005) Visualizing and manipulating individual protein molecules. Physiol. Meas. 26 (4): R119–153.

    Article  PubMed  ADS  Google Scholar 

  • Kim S and Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125 (48): 14652–14653.

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, and Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22 (1): 93–97.

    Article  CAS  Google Scholar 

  • Kittel C (1996) Introduction to Solid State Physics. John Wiley, New York.

    Google Scholar 

  • Klar TA, Jakobs S, Dyba M, Egner A, and Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Nat.Acad. Sci. USA 97: 8206–8210.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, and Brus LE (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media. J. Amer. Chem. Soc. 112: 1327–1332.

    Article  CAS  Google Scholar 

  • Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, and Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97 (17): 9461–9466.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Larson D, Zipfel W, Williams R, Clark S, Bruchez M, Wise F, and Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300: 1434–1436.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Leatherdale CA, Woo WK, Mikulec FV, and Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106: 7619–7622.

    Article  CAS  Google Scholar 

  • Levi V, Ruan Q, and Gratton E (2005) 3-D particle tracking in a two-photon microscope: Application to the study of molecular dynamics in cells. Biophys. J. 88 (4): 2919–2928.

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Tsay JM, Michalet X, and Weiss S (2005) Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chem. Phys. 318 (1–2): 82–90.

    CAS  ADS  Google Scholar 

  • Lidke DS, Lidke KA, Rieger B, Jovin TM, and Arndt-Jovin DJ (2005) Reaching out for signals: Filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell Biol. 170 (4): 619–26.

    Article  PubMed  CAS  Google Scholar 

  • Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, and Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22 (2): 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Macklin JJ, Trautman JK, Harris TD, and Brus LE (1996) Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272: 255–258.

    Article  CAS  ADS  Google Scholar 

  • Mahan GD (2000) Many-Particle Physics. Kluwer Academic/Plenum, New York.

    Google Scholar 

  • Mansson A, Sundberg M, Balaz M, Bunk R, Nicholls IA, Omling P, Tagerud S, and Montelius L (2004) In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314 (2): 529–534.

    Article  PubMed  CAS  Google Scholar 

  • Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, and Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122 (49): 12142–12150.

    Article  CAS  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, and Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4 (6): 435–46.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Meier J, Vannier C, Serge A, Triller A, and Choquet D (2001) Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4 (3): 253–60.

    Article  PubMed  CAS  Google Scholar 

  • Mews A, Eychmüller A, Giersig M, Schoos D, and Weller H (1994) Preparation, characterization, and photophysics of the quantum dot quantum well system CdS/HgS/CdS. J. Phys. Chem. 98: 934–941.

    Article  CAS  Google Scholar 

  • Michalet X, Kapanidis AN, Laurence T, Pinaud F, Doose S, Pflughoefft M, and Weiss S (2003) The power and prospects of fluorescence microscopies and spectroscopies. Ann. Rev. Biophys. Biomol. Struct. 32: 161–182.

    Article  CAS  Google Scholar 

  • Michalet X, Lacoste TD, and Weiss S (2001a) Ultrahigh-resolution colocalization of spectrally resolvable point-like fluorescent probes. Methods 25 (1):.

    Google Scholar 

  • Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP, Alivisatos AP, and Weiss S (2001b) Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol. 2 (4): 261–276.

    Article  CAS  ADS  Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, and Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307 (5709): 538–544.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Mitchell GP, Mirkin CA, and Letsinger RL (1999) Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121 (35): 8122–8123.

    Article  CAS  Google Scholar 

  • Moerner WE (2003) Optical measurements of single molecules in cells. Trends Anal. Chem. 22 (9): 544–548.

    Article  CAS  Google Scholar 

  • Mokari T, Rothenberg E, Popov I, Costi R, and Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304 (5678): 1787–1790.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Murphy CJaC, J.L. (2002) Quantum dots: A primer. Appl. Spectroscopy 56 (1): 16A–27A.

    Article  ADS  Google Scholar 

  • Murray CB, Norris DJ, and Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Amer. Chem. Soc. 115: 8706–8715.

    Article  CAS  Google Scholar 

  • Nan X, Sims PA, Chen P, and Xie XS (2005) Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys. 109 (51): 24220–24224.

    PubMed  CAS  Google Scholar 

  • Neuhauser RG, Shimizu KT, Woo WK, Empedocles SA, and Bawendi MG (2000) Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys. Rev. Lett. 85 (15): 3301–3304.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, and Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383: 802–804.

    Article  CAS  ADS  Google Scholar 

  • Ober RJ, Ram S, and Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys. J. 86 (2): 1185–1200.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Orrit M and Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65 (21): 2716–2719.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Osaki F, Kanamori T, Sando S, Sera T, and Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126: 6520–6521.

    Article  PubMed  CAS  Google Scholar 

  • Paige MF, Bjerneld EJ, and Moerner WE (2001) A comparison of through-the-objective total internal reflection microscopy and epifluorescence microscopy for single-molecule fluorescence imaging. Single Molec. 2: 191–201.

    Article  CAS  ADS  Google Scholar 

  • Pathak S, Choi SK, Arnheim N, and Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123 (17): 4103–4104.

    Article  PubMed  CAS  Google Scholar 

  • Pawley, JB (1995) Handbook of biological confocal microscopy, 2ndedition, Plenum Press, New York.

    Google Scholar 

  • Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, and Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 4 (4): 703–707.

    Article  CAS  ADS  Google Scholar 

  • Peng X, Schlamp MC, Kadavanich AV, and Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Amer. Chem. Soc. 119 (30): 7019–7029.

    Article  CAS  Google Scholar 

  • Pinaud F, King D, Moore H-P, and Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126 6115–6123.

    Article  PubMed  CAS  Google Scholar 

  • Reiss P, Bleuse J, and Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2 (7): 781–784.

    Article  CAS  ADS  Google Scholar 

  • Rogach AL, Harrison MT, Kershaw SV, Kornowski A, Burt MG, Eychmuller A, and Weller H (2001) Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys. Status Solidi B 224 (1): 153–158.

    Article  CAS  ADS  Google Scholar 

  • Rossetti R, Nakahara S, and Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79: 1086–1088.

    Article  CAS  ADS  Google Scholar 

  • Saxton MJ and Jacobson K (1997) Single-particle tracking: Applications to membrane dynamics. Ann. Rev. Biophys. Biomol. Struct. 26: 373–399.

    Article  CAS  Google Scholar 

  • Schmidt T, Schütz GJ, Baumgartner W, Gruber HJ, and Schindler H (1996) Imaging of single molecule diffusion. Proc. Nat. Acad. Sci. USA 93: 2926–2929.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Schutz GJ, Kada G, Pastushenko VP, and Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. Embo. J. 19 (5): 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, and Brauchle C (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294 (5548): 1929–32.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Snyder GE, Sakamoto T, Hammer JA, 3rd, Sellers JR, and Selvin PR (2004) Nanometer localization of single green fluorescent proteins: Evidence that myosin V walks hand-over-hand via telemark configuration. Biophys. J. 87 (3): 1776–1783.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Speidel M, Jonas A, and Florin EL (2003) Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28 (2): 69–71.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Steigerwald ML and Brus LE (1990) Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 23 (6): 183–8.

    Article  CAS  Google Scholar 

  • Stillman MJ (1995) Metallothioneins. Coord. Chem. Rev. 144: 461–511.

    Article  CAS  Google Scholar 

  • Sukhanova A, Devy M, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, and Nabiev I (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324 (1): 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RE, Larson DR, and Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82 (5): 2775–83.

    Article  PubMed  CAS  Google Scholar 

  • Ueda M, Sako Y, Tanaka T, Devreotes P, and Yanagida T (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294 (5543): 864–7.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, and Weller H (1994) CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98: 7665–7673.

    Article  CAS  Google Scholar 

  • Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, and Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88 (5): L30–32.

    Article  PubMed  CAS  Google Scholar 

  • Webb RH (1999) Theoretical basis of confocal microscopy. Methods Enzymol. 307: 3–20.

    Article  PubMed  CAS  Google Scholar 

  • Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283: 1676–1683.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Weller H (1993a) Quantized semiconductor particles: A novel state of matter for materials science. Adv. Mater. (Weinheim, Germany) 5 (2): 88–95.

    Article  CAS  ADS  Google Scholar 

  • Weller H (1993b) Colloidal semiconductor Q-particles: Chemistry in the transition region between solid and molecular states. Angewandte Chemie 105 (1): 43–55 (See also Angew. Chem., Int. Ed. Engl., 1993, 32(1), 41–53).

    Article  CAS  Google Scholar 

  • Weller H (1998) Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures. Curr. Opin. Colloid Interface Sci. 3 (2): 194–199.

    Article  CAS  Google Scholar 

  • Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, and Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21 (1): 41–46.

    Article  CAS  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, and Selvin PR (2003) Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300 (5628): 2061–2065.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Yin Y and Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437 (7059): 664–70.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Zhang JZ (1997) Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Acc. Chem. Res. 30 (10): 423–429.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bentolila, L.A., Michalet, X., Weiss, S. (2008). Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging. In: Rigler, R., Vogel, H. (eds) Single Molecules and Nanotechnology. Springer Series in Biophysics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73924-1_3

Download citation

Publish with us

Policies and ethics