Skip to main content

Single-Molecule Covalent Chemistry in a Protein Nanoreactor

  • Chapter
Single Molecules and Nanotechnology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 12))

Covalent chemistry can be observed at the single-molecule level by using engineered protein pores as “nanoreactors”. By recording the ionic current driven through single engineered alpha-hemolysin (αHL) pores in a transmembrane potential, individual bond-making and bond-breaking steps that occur within the pore and perturb the current are monitored with sub-millisecond time-resolution. Recently, a variety of covalent reactions of small molecules have been observed by this approach including irreversible light-activated chemistry, multiple turnovers of reversible reactions, the turnover of normally irreversible reactions in a twocompartment system and a step-by- step polymerization. These single-molecule experiments are revealing information about fundamental chemical processes that cannot be extracted from ensemble measurements. Further, the approach can be used to examine the effects of the local environment on chemistry and catalysis, and to construct sensors for reactive molecules based on covalent chemistry rather than non-covalent binding interactions. Alternative approaches to small molecule covalent chemistry at the single-molecule level are described in the review, as well as the problems and present limitations of the nanoreactor approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., and Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465.

    Article  PubMed  CAS  Google Scholar 

  • Baker, G. A., Baker, S. N., Pandey, S., and Bright, F. V. (2005). An analytical view of ionic liquids. The Analyst 130, 800–808.

    Article  PubMed  CAS  Google Scholar 

  • Bard, A. J., and Fan, F.-R. F. (1996). Electrochemical detection of single molecules. Acc Chem Res 29, 572–578.

    Article  CAS  Google Scholar 

  • Bayley, H., and Cremer, P. S. (2001). Stochastic sensors inspired by biology. Nature 413, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, H., and Jayasinghe, L. (2004). Functional engineered channels and pores. Mol Membrane Biol 21, 209–220.

    Article  CAS  Google Scholar 

  • Beckstein, O., and Sansom, M. S. (2004). The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys Biol 1, 42–52.

    Article  PubMed  CAS  Google Scholar 

  • Bezrukov, S. M., and Kasianowicz, J. J. (1993). Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70, 2352–2355.

    Article  PubMed  CAS  Google Scholar 

  • Blatz, A. L., and Magleby, K. L. (1986). Correcting single channel data for missed events. Biophys J 49, 967–980.

    Article  PubMed  CAS  Google Scholar 

  • Braha, O., Walker, B., Cheley, S., Kasianowicz, J. J., Song, L., Gouaux, J. E., and Bayley, H. (1997). Designed protein pores as components for biosensors. Chem Biol 4, 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Braslavsky, I., Hebert, B., Kartalov, E., and Quake, S. R. (2003). Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci USA 100, 3960–3964.

    Article  PubMed  CAS  Google Scholar 

  • Collinson, M. M., and Wightman, R. M. (1995). Observation of individual chemical reactions in solution. Science 268, 1883–1885.

    Article  PubMed  CAS  Google Scholar 

  • Conti, M., Falini, G., and Samori, B. (2000). How strong is the coordination bond between a histidine tag and Ni-nitrilotriacetate? An experiment of mechanochemistry on single molecules. Angew Chem Int Ed Engl 39, 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Cymes, G. D., Ni, Y., and Grosman, C. (2005). Probing ion-channel pores one proton at a time. Nature 438, 975–980.

    Article  PubMed  CAS  Google Scholar 

  • Düllmann, C. E., et alet al. (2002). Chemical investigation of hassium (element 108). Nature 418, 859–862.

    Article  PubMed  Google Scholar 

  • Eckel, R., Ros, R., Decker, B., Mattay, J., and Anselmetti, D. (2005). Supramolecular chemistry at the single molecule level. Angew Chem Int Ed Engl 44, 484–488.

    Article  PubMed  CAS  Google Scholar 

  • Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H., and Gaub, H. E. (1999). How strong is a covalent bond? Science 283, 1727–1730.

    Article  PubMed  CAS  Google Scholar 

  • Gronheid, R., Stefan, A., Cotlet, M., Hofkens, J., Qu, J., Mullen, K., van der Auweraer, M., Verhoeven, J. W., and De Schryver, F. C. (2003). Reversible intramolecular electron transfer at the single-molecule level. Angew Chem Int Ed Engl 42, 4209–4214.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L.-Q., and Bayley, H. (2000). Interaction of the non-covalent molecular adapter, β-cyclodextrin, with the staphylococcal α-hemolysin pore. Biophys J 79, 1967–1975.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L.-Q., Braha, O., Conlan, S., Cheley, S., and Bayley, H. (1999). Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L.-Q., Cheley, S., and Bayley, H. (2001). Capture of a single molecule in a nanocavity. Science 291, 636–640.

    Article  PubMed  CAS  Google Scholar 

  • Gu, L.-Q., Cheley, S., and Bayley, H. (2003). Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc Natl Acad Sci USA 100, 15498–15503.

    Article  PubMed  CAS  Google Scholar 

  • Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., and Norskov, J. K. (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Henzl, J., Mehlhorn, M., Gawronski, H., Rieder, K. H., and Morgenstern, K. (2006). Reversible cis-trans isomerization of a single azobenzene molecule. Angew Chem Int Ed Engl 45, 603–606.

    Article  PubMed  CAS  Google Scholar 

  • Herschbach, D. (2000). Fifty years in physical chemistry: Homage to mentors, methods, and molecules. Annu Rev Phys Chem 51, 1–39.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd edition, (Sunderland, MA, USA: Sinauer).

    Google Scholar 

  • Hladky, S. B., and Haydon, D. A. (1970). Discreteness of conductance change in biomolecular lipid membranes in the presence of certain antibiotics. Nature 225, 451–453.

    Article  PubMed  CAS  Google Scholar 

  • Ho, W. (2002). Single-molecule chemistry. J Chem Phys 117, 11033–11061.

    Article  CAS  Google Scholar 

  • Howorka, S., and Bayley, H. (2002). Probing distance and electrical potential within a protein pore with tethered DNA. Biophys J 83, 3202–3210.

    Article  PubMed  CAS  Google Scholar 

  • Howorka, S., Movileanu, L., Lu, X., Magnon, M., Cheley, S., Braha, O., and Bayley, H. (2000). A protein pore with a single polymer chain tethered within the lumen. J Am Chem Soc 122, 2411–2416.

    Article  CAS  Google Scholar 

  • Jaikaran, D. C. J., and Woolley, G. A. (1995). Characterization of thermal isomerization at the single molecule level. J Phys Chem 99, 13352–13355.

    Article  CAS  Google Scholar 

  • Johansson, L., Gafvelin, G., and Arner, E. S. (2005). Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta 1726, 1–13.

    PubMed  CAS  Google Scholar 

  • Kang, X., Gu, L.-Q., Cheley, S., and Bayley, H. (2005). Single protein pores containing molecular adapters at high temperatures. Angew Chem Int Ed Engl 44, 1495–1499.

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz, J. J., and Bezrukov, S. M. (1995). Protonation dynamics of the α-toxin channel from spectral analysis of pH-dependent current fluctuations. Biophys J 69, 94–105.

    Article  PubMed  CAS  Google Scholar 

  • Kersey, F. R., Yount, W. C., and Craig, S. L. (2006). Single-molecule forces spectroscopy of bimolecular reactions: System homology in the mechanical activation of ligand substitution reactions. J Am Chem Soc 128, 3886–3887.

    Article  PubMed  CAS  Google Scholar 

  • Kong, C. Y., and Muthukumar, M. (2005). Simulations of stochastic sensing of proteins. J Am Chem Soc 127, 18252–18261.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D. S. (2005). The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9, 570–575.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. I., and Brody, J. P. (2005). Single-molecule enzymology of chymotrypsin using water-in-oil emulsion. Biophys J 88, 4303–4311.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. J., and Ho, W. (1999). Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722.

    Article  PubMed  CAS  Google Scholar 

  • Lindström, U. (2002). Stereoselective organic reactions in water. Chem Rev 102, 2751–2772.

    Article  PubMed  Google Scholar 

  • Loudwig, S., and Bayley, H. (2005). In Light-Activated Proteins: An Overview Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, M. Goeldner, and R. Givens, eds. (Weinheim, Germany: Wiley-VCH Verlag), pp. 253–304.

    Google Scholar 

  • Lu, H. P., Xun, L., and Xie, X. S. (1998). Single-molecule enzymatic dynamics. Science 282, 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  • Luchian, T., Shin, S.-H., and Bayley, H. (2003a). Kinetics of a three-step reaction observed at the single molecule level. Angew Chem Int Ed 42, 1926–1929.

    Article  CAS  Google Scholar 

  • Luchian, T., Shin, S.-H., and Bayley, H. (2003b). Single-molecule covalent chemistry with spatially separated reactants. Angew Chem Int Ed 42, 3766–3771.

    Article  CAS  Google Scholar 

  • Mathé, J., Aksimentiev, A., Nelson, D. R., Schulten, K., and Meller, A. (2005). Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci U S A 102, 12377–12382.

    Article  PubMed  Google Scholar 

  • Mayer, M., Kriebel, J. K., Tosteson, M. T., and Whitesides, G. M. (2003). Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys J 85, 2684–2695.

    Article  PubMed  CAS  Google Scholar 

  • Min, W., English, B. P., Luo, G., Cherayil, B. J., Kou, S. C., and Xie, X. S. (2005). Fluctuating enzymes: Lessons from single-molecule studies. Acc Chem Res 38, 923–931.

    Article  PubMed  CAS  Google Scholar 

  • Mindell, J. A., Zhan, H., Huynh, P. D., Collier, R. J., and Finkelstein, A. (1994). Reaction of diphtheria toxin channels with sulfhydryl reagents: Observation of chemical reactions at the single molecule level. Proc Natl Acad Sci USA 91, 5272–5276.

    Article  PubMed  CAS  Google Scholar 

  • Moczydlowski, E. (1986). In Single-Channel Enzymology Ion Channel Reconstitution, C. Miller, ed. (New York: Plenum Press), pp. 75–113.

    Google Scholar 

  • Morrill, J. A., and MacKinnon, R. (1999). Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J Gen Physiol 114, 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Movileanu, L., and Bayley, H. (2001). Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc Natl Acad Sci USA 98, 10137–10141.

    Article  PubMed  CAS  Google Scholar 

  • Movileanu, L., Cheley, S., and Bayley, H. (2003). Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J 85, 897–910.

    Article  PubMed  CAS  Google Scholar 

  • Movileanu, L., Cheley, S., Howorka, S., Braha, O., and Bayley, H. (2001). Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. J Gen Physiol 117, 239–251.

    Article  PubMed  CAS  Google Scholar 

  • Movileanu, L., Howorka, S., Braha, O., and Bayley, H. (2000). Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnology 18, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Muir, T. (2003). Semisynthesis of proteins by expressed protein ligation. Ann Rev Biochem 72, 249–289.

    Article  PubMed  CAS  Google Scholar 

  • Musyanovych, A., Mailander, V., and Landfester, K. (2005). Miniemulsion droplets as single molecule nanoreactors for polymerase chain reaction. Biomacromolecules 6, 1824–1828.

    Article  PubMed  CAS  Google Scholar 

  • Nitzan, A., and Ratner, M. A. (2003). Electron transport in molecular wire junctions. Science 300, 1384–1389.

    Article  PubMed  CAS  Google Scholar 

  • Noskov, S. Y., Im, W., and Roux, B. (2004). Ion permeation through the alpha-hemolysin channel: Theoretical studies based on Brownian dynamics and Poisson-Nernst-Planck electrodiffusion theory. Biophys J 87, 2299–2309.

    Article  PubMed  CAS  Google Scholar 

  • Otero, R., Rosei, F., and Besenbacher, F. (2006). Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu Rev Phys Chem 57, 497–525.

    Article  PubMed  CAS  Google Scholar 

  • Paula, S., Akeson, M., and Deamer, D. (1999). Water transport by the bacterial channel α-hemolysin. Biochim Biophys Acta 1418, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon, D., Prod’hom, B., and Hess, P. (1988). Conformation changes associated with ion permeation in L-type calcium channels. Nature 333, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon, D., Prod’hom, B., and Hess, P. (1989). Interactions of protons with single open L-type calcium channels: pH Dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions. J Gen Physiol 94, 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Prod’hom, B., Pietrobon, D., and Hess, P. (1987). Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329, 243–246.

    Article  PubMed  Google Scholar 

  • Prod’hom, B., Pietrobon, D., and Hess, P. (1989). Interactions of protons with single open L-type calcium channels: Location of protonation site and dependence of proton-induced current fluctuations on concentration and species of permeant ion. J Gen Physiol 94, 23–42.

    Article  PubMed  Google Scholar 

  • Raushel, F. M., Thoden, J. B., and Holden, H. M. (2003). Enzymes with molecular tunnels. Acc Chem Res 36, 539–548.

    Article  PubMed  CAS  Google Scholar 

  • Raviv, U., Perkin, S., Laurat, P., and Klein, J. (2004). Fluidity of water confined down to subnanometer films. Langmuir 20, 5322–5332.

    Article  PubMed  CAS  Google Scholar 

  • Richard, E. A., and Miller, C. (1990). Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208.

    Article  PubMed  CAS  Google Scholar 

  • Roeffaers, M. B., Sels, B. F., Uji, I. H., De Schryver, F. C., Jacobs, P. A., De Vos, D. E., and Hofkens, J. (2006). Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Rondelez, Y., Tresset, G., Tabata, K. V., Arata, H., Fujita, H., Takeuchi, S., and Noji, H. (2005). Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat Biotechnol 23, 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Root, M. J., and MacKinnon, R. (1994). Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 265, 1852–1856.

    Article  PubMed  CAS  Google Scholar 

  • Sakata, T., Yan, Y., and Marriott, G. (2005). Optical switching of dipolar interactions on proteins. Proc Natl Acad Sci U S A 102, 4759–4764.

    Article  PubMed  CAS  Google Scholar 

  • Schadel, M. (2006). Chemistry of superheavy elements. Angew Chem Int Ed Engl 45, 368–401.

    Article  PubMed  Google Scholar 

  • Selzer, Y., and Allara, D. L. (2006). Single-molecule electrical junctions. Annu Rev Phys Chem 57, 593–623.

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov, G., and Lester, H. A. (2004). Gating transitions in bacterial ion channels measured at 3 microseconds resolution. J Gen Physiol 124, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Shilov, I. Y., and Kurnikova, M. G. (2003). Energetics and dynamics of a cyclic oligosaccharide molecule in a confined protein pore environment. A molecular dynamics study. J Phys Chem B 107, 7189–7201.

    Article  CAS  Google Scholar 

  • Shin, S.-H., and Bayley, H. (2005). Stepwise growth of a single polymer chain. J Am Chem Soc 127, 10462–10463.

    Article  PubMed  CAS  Google Scholar 

  • Shin, S.-H., Luchian, T., Cheley, S., Braha, O., and Bayley, H. (2002). Kinetics of a reversible covalent–bond forming reaction observed at the single molecule level. Angew Chem Int Ed 41, 3707–3709.

    Article  CAS  Google Scholar 

  • Spuches, A. M., Kruszyna, H. G., Rich, A. M., and Wilcox, D. E. (2005). Thermodynamics of the As(III)-thiol interaction: Arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorganic Chemistry 44, 2964–2972.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer, D. A., and Karlin, A. (1994). The electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding-site cysteines with charged methanethiosulfonates. Biochemistry 33, 6840–6849.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., and Schultz, P. G. (2004). Expanding the genetic code. Angew Chem Int Ed Engl 44, 34–66.

    Article  PubMed  Google Scholar 

  • Woolley, G. A., Jaikaran, A. S. I., Zhang, Z., and Peng, S. (1995). Design of regulated ion channels using measurements of cis-trans isomerization in single molecules. J Am Chem Soc 117, 4448–4454.

    Article  CAS  Google Scholar 

  • Woolley, G. A., Zunic, V., Karanicolas, J., Jaikaran, A. S. I., and Starostin, A. V. (1997). Voltage-dependent behavior of a ball-and-chain gramicidin channel. Biophys J 73, 2465–2475.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, S., Nakamura, T., Matsumoto, M., and Shigekawa, H. (2003). Phase switching of a single isomeric molecule and associated characteristic rectification. J Am Chem Soc 125, 16430–16433.

    Article  PubMed  CAS  Google Scholar 

  • Zangi, R., and Mark, A. E. (2003a). Bilayer ice and alternate liquid phases of confined water. J Chem Phys 119, 1694–1700.

    Article  CAS  Google Scholar 

  • Zangi, R., and Mark, A. E. (2003b). Monolayer ice. Phys Rev Lett 91, 025502–025501 to 025502–025504.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bayley, H., Luchian, T., Shin, SH., Steffensen, M.B. (2008). Single-Molecule Covalent Chemistry in a Protein Nanoreactor. In: Rigler, R., Vogel, H. (eds) Single Molecules and Nanotechnology. Springer Series in Biophysics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73924-1_10

Download citation

Publish with us

Policies and ethics