Skip to main content

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 2))

Abstract

In the last decade, advances in molecular methods have permitted the detection of major genes or chromosomal regions (quantitative trait loci, QTLs) that account for an important fraction of the phenotypic variance of productive traits in many domestic animals, principally mammals. These discoveries have only been possible due to the development of statistical methods, molecular markers, and dense linkage maps. In salmonids, the development of genetic maps and QTL identification has been slower. These fish have a long interval between generations, a tetraploid genomic background, and few informative markers—all factors that impede mapping efforts. In spite of these factors, first generation linkage maps for the principal commercial salmon species have been developed, and many interesting QTLs have been located. In this chapter, as introductory topics, we revisit the taxonomic status, distribution, and biological and life history characteristics of salmonids (Salmo, Oncorhynchus, Coregonus, and Hucho), as well as the history of salmon culture since the fourteenth century and the principal genetic improvement programs for selected traits in commercial species. We describe the principal linkage maps published from 1990 to 2006, including four maps for rainbow trout, two maps for Atlantic salmon, and single maps for pink salmon, brown trout, Arctic charr and lake whitefish. In general, two mapping strategies have been used for salmon species, either using anonymous dominant markers (AFLP) and a cross design using doubled haploid fish, or using anonymous co-dominant markers (principally SSR) in a backcross mating design. These mapping studies have revealed the effect of ancestral tetraploidy, remarkable differences in the recombination rate between sexes, and syntenic regions across different species and genera. Second generation maps are under construction, including efforts to produce additional genomic resources (BAC libraries, sequencing and development of type I markers). QTL detection has been centered principally in rainbow trout and Atlantic salmon, with different approaches, mating designs, and results. Traits that have been studied include upper temperature tolerance, spawning date, body mass or weight, fork length, condition factor, resistance to diseases (IPN, IHN, ISA, or parasites), as well as other meristic and embryonic traits. Association studies using selective genotyping or bulked segregant analysis have produced specific markers for the Y chromosome, reproductive traits, flesh color, and albinism. Many of these markers, coding genes, telomeric regions, and ribosomal genes have been physically mapped using FISH. Finally, all the QTL mapping, markers, and other information on specific chromosome regions are being used to integrate the genetic and cytogenetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuin M, Martinez P, Sanchez L (1996) Localization of the repetitive telomeric sequence (TTAGGG) n in four salmonid species. Genome 39:1035–1038

    Article  PubMed  CAS  Google Scholar 

  • Allendorf F, Danzmann R (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083–1092

    PubMed  CAS  Google Scholar 

  • Allendorf F, Thorgaard G (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner B (ed) Evolutionary genetics of fishes. Plenum, Dordrecht, 1–53

    Google Scholar 

  • Allendorf F, Knudsen K, Leary R (1983) Adaptative significance of differences in the tissue-specific expression of a phosphoglucomutase gene in rainbow trout. Proc Natl Acad Sci USA 80:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Allendorf F, Gelman W, Thorgaard G (1994) Sex-linkage of two allozyme loci in Oncorhynchus mykiss (rainbow trout). Heredity 72:498–507

    Article  PubMed  CAS  Google Scholar 

  • Araneda C, Neira R, Iturra P (2005) Identification of a dominant SCAR marker associated with colour traits in Coho salmon (Oncorhynchus kisutch). Aquaculture 247:67–73

    Article  CAS  Google Scholar 

  • Bailey G, Wilson A, Halver J, Johnson C (1970) Multiple forms of supernatant malate dehydrogenase in salmonid fishes. J Biol Chem 245:5927–5940

    PubMed  CAS  Google Scholar 

  • Bishop S (2002) Breeding for disease resistance uniting genetics and epidemiology. Notes of advanced Ph.D. summer course. Ecole Nationale Supérieure Agronomique, Montpellier, France

    Google Scholar 

  • Bergot P, Blanc J, Escaffre A (1981) Relationship between number of pyloric caeca and growth in rainbow trout (Salmo gairdneri Richardson). Aquaculture 22:81–96

    Article  Google Scholar 

  • Blanco C (1995) La trucha cría industrial. Editorial Mundi prensa, España, 1–503

    Google Scholar 

  • Bondari K (1983) Response to bidirectional selection for body weight in channel catfish. Aquaculture 33:73–81

    Article  Google Scholar 

  • Broman K, Wu H, Sen S, Churchill G (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Brunelli J, Thorgaard G (2004) A new Y chromosome-specific marker for Pacific salmon. Trans Am Fish Soc 133:1247–1253

    Article  CAS  Google Scholar 

  • Colihueque N, Iturra P, Estay F, Diaz NF (2001) Diploid chromosome number variations and sex chromosome polymorphism in five cultured strains of rainbow trout (Oncorhynchus mykiss). Aquaculture 198:63–77

    Article  Google Scholar 

  • Complex Trait Consortium (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    Article  CAS  Google Scholar 

  • Coulibaly I, Danzmann R, Palti Y, Vallejo R, Gahr S, Yao J, Rexroad C (2006) Mapping of genes in a region associated with upper temperature tolerance in rainbow trout. Anim Genet 37:598–599

    Article  PubMed  CAS  Google Scholar 

  • Danzmann R, Jackson T, Ferguson M (1999) Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture 173:45–58

    Article  CAS  Google Scholar 

  • Danzmann R (2005) LINKMFEX: linkage analysis software for diploid and tetraploid outcrossed mapping panels. Aquaculture 247:10

    Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and quantitative trait locus. Theor Appl Genet 85:353–359

    Article  Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 13:1365–1373

    Google Scholar 

  • Dekkers C, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Devlin R, McNeil B, Groves D, Donaldson E (1991) Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 48:1606–1612

    CAS  Google Scholar 

  • Devlin R, McNeil B, Solar I, Donaldson E (1994) A rapid PCR-based test for Y-chromosomal DNA allows simple production of all-female strains of chinook salmon. Aquaculture 128:211–220

    Article  CAS  Google Scholar 

  • Devlin R, Stone G, Smailus D (1998) Extensive direct tandem organization of a long repeat DNA sequence on the Y chromosome of chinook salmon (Oncorhynchus tshawytscha). J Mol Evol 46:277–287

    Article  PubMed  CAS  Google Scholar 

  • Devlin R, Biagi CA, Smailus D (2001) Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica 111:43–58

    Article  PubMed  CAS  Google Scholar 

  • Du S, Devlin R, Hew C (1993) Genomic structure of growth hormone genes in Chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II, and a male specific pseudogene, GH-Psi. DNA Cell Biol 12:739–751

    PubMed  CAS  Google Scholar 

  • Dunham R (1987) American catfish breeding programs. Proc World Symp on Selection, Hybridization and Genetic Engineering in Aquaculture 11:407–416

    Google Scholar 

  • Dunham R, Majumdar K, Hallerman E, Bartley D, Mair G et al. (2001) Review of the status of aquaculture genetics. In: Subasinghe R, Bueno P, Phillips M, Hough C, McGladdery S, Arthur J (eds) Aquaculture in the third millennium. Tech Proc of Conf on Aquaculture in the Third Millennium, 137–166

    Google Scholar 

  • Ehlinger N (1977) Selective breeding of trout for resistance to furunculosis. NY Fish Game J 24:25–36

    Google Scholar 

  • FAO (2004) Review of the state of fisheries and aquaculture (SOFIA) 2004. Department of Fisheries. Food and Agricultural Organization of the United Nations

    Google Scholar 

  • FAO (2005a) Yearbook, fishery statistics: aquaculture production 2003. 96:2

    Google Scholar 

  • FAO (2005b) Yearbook, fishery statistics: capture production 2003. 96:1

    Google Scholar 

  • Felip A, Fujiwara A, Young WP, Wheeler PA, Noakes M et al (2004) Polymorphism and differentiation of rainbow trout Y chromosomes. Genome 47:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Felip A, Young W, Wheeler P, Thorgaard G (2005) An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture 247:35–43

    Article  CAS  Google Scholar 

  • Fishback A, Danzmann R, Ferguson M (2000) Microsatellite allelic heterogeneity among hatchery rainbow trout maturing in different seasons. J Fish Biol 57:1367–1380

    Article  CAS  Google Scholar 

  • Forbes S, Knudsen K, North T, Allendorf F (1994) One of two growth hormone genes in coho salmon is sex-linked. Proc Natl Acad Sci USA 91:1628–1631

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida M (1998) Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosome Res 6:463–471

    Article  PubMed  CAS  Google Scholar 

  • Gall G, Bakar Y (2002) Application of mixed-model techniques to fish breed improvement: analysis of breeding-value selection to increase 98-day body weight in tilapia. Aquaculture 212:93–113

    Article  Google Scholar 

  • Gall G, Bakar Y, Famula T (1993) Estimating genetic change from selection. Aquaculture 111:75–88

    Article  Google Scholar 

  • Gall G, Neira R (2004) Genetic analysis of female reproduction traits of farmed coho salmon (Oncorhynchus kisutch). Aquaculture 234:143–154

    Article  Google Scholar 

  • Gharbi K (2001) Construction d’une carte génetiqué partialle du génome tétraploide de la truite commune (Salmo trutta). Cartographie comparée des régions paralogues et alignements avec les actes du saumon atlantique (Salmo salar) et de la truite arc-en-ciel (Oncorhynchus mykiss). Docteur thése, Institut National Agronomique Paris-Grignon, France

    Google Scholar 

  • Gharbi K, Guyomard R, Danzmann R, Sakamato T, Gautier A et al (2005) Ancestral tetraploidy in salmonid fish and the brown trout (Salmo trutta) linkage map. Aquaculture 247:15

    Google Scholar 

  • Gharbi K, Gautier A, Danzmann R, Gharbi S, Sakamoto T et al (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics 172:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Gjedrem T (1979) Selection for growth rate and domestication in Atlantic salmon. Z Tierz Zuechtungsbiol 96:56–59

    Google Scholar 

  • Gjedrem T, Salte R, Gjøen H (1991) Genetic variation in susceptibility of Atlantic salmon to furunculosis. Aquaculture 97:1–6

    Article  Google Scholar 

  • Gjedrem T (1997) Selective breeding to improve aquaculture production. World Aquaculture 28:33–45

    Google Scholar 

  • Gjerde B (1986) Growth and reproduction in fish and shellfish. Aquaculture 57:37–55

    Article  Google Scholar 

  • Gjerde B, Gjedrem T (1984) Estimates of phenotypic parameters for carcass traits in Atlantic salmon and rainbow trout. Aquaculture 36:97–110

    Article  Google Scholar 

  • Gjerde B, Korsvoll A (1999) Realized selection differentials for growth rate and early sexual maturity in Atlantic salmon. Aquaculture Europe 99:73–74

    Google Scholar 

  • Gilbey J, Verspoor E, McLay A, Houlihan D (2004) A microsatellite linkage map for Atlantic salmon (Salmo salar). Anim Genet 35:98–105

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Nilsson J (1999) Restriction fragment length polymorphism at the growth hormone 1 gene in Atlantic salmon (Salmo salar L.) and its association with weight among the offspring of a hatchery stock. Aquaculture 173:73–80

    Article  CAS  Google Scholar 

  • Guyomard R, Mauger S, Tabet-Canale K, Martineau S, Genet C et al (2006) A type I and type II microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms. BMC Genomics 7:302

    Article  PubMed  CAS  Google Scholar 

  • Haley C, Knott S (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Halver J (ed) (1972) Fish nutrition. Academic, New York

    Google Scholar 

  • Hansen J, Strassburger P, Thorgaard G, Young W, Du Pasquier L (1999) Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J Immunol 163:774–86

    PubMed  CAS  Google Scholar 

  • Hardie DC, Hebert PDN (2004) Genome-size evolution in fishes. Can J Fish Aquat Sci 61:1636–1646

    Article  Google Scholar 

  • Hartley S (1987) The chromosomes of salmonid fishes. Biol Rev Camb Philos Soc 62:197–214

    Article  Google Scholar 

  • Hartley S (1990) Variation in cellular DNA content in Arctic charr, Salvelinus alpinus (L.). J Fish Biol 37:189–190

    Article  Google Scholar 

  • Hartley S, Davidson W (1994) Characterization and distribution of genomic repeat sequences from Arctic charr (Salvelinus alpinus). In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, 271–280

    Google Scholar 

  • Heath D, Bryden C, Shrimptom J, Iwama G, Kelly J, Heath J (2002) Relationships between heterozygosity, allelic distance (d 2), and reproductive traits in chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 59:77–84

    Article  Google Scholar 

  • Henikoff S, Ahmad K, Malik H (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Hershberger W, Myers J, Iwamoto R, McCauley W, Saxton A (1990) Genetic changes in the growth of coho salmon (Oncorhynchus kisutch) in marine net-pens, produced by ten years of selection. Aquaculture 85:187–184

    Article  Google Scholar 

  • Hill B (1982) Infectious pancreatic necrosis virus and its virulence. In: Roberts R (ed) Microbial diseases of fish. Academic, London, 91–114

    Google Scholar 

  • Huet M (1972) Textbook of fish culture: breeding and cultivation of fish. Fishing News Limited, London

    Google Scholar 

  • Iturra P, Medrano J, Bagley M, Lam N, Vergara N et al (1998) Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica 101:209–213

    Article  Google Scholar 

  • Iturra P, Bagley M, Vergara N, Imbert P, Medrano J (2001a) Development and characterization of DNA sequence OmyP9 associated with the sex chromosomes in rainbow trout. Heredity 86:412–419

    Article  CAS  Google Scholar 

  • Iturra P, Lam N, de la Fuente M, Vergara N, Medrano J (2001b) Characterization of sex chromosomes in rainbow trout and coho salmon using fluorescence in situ hybridization (FISH). Genetica 111:125–131

    Article  CAS  Google Scholar 

  • Jackson T, Ferguson M, Danzmann R, Fishback A, Ihssen P et al (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80:143–151

    Article  Google Scholar 

  • Johnson O, Utter F, Rabinovitch P (1987) Interspecies differences in salmonid cellular DNA identified by flow cytometry. Copeia 1987:1001–1009

    Article  Google Scholar 

  • Katagiri T, Asakawa S, Minagawa S, Shimizu N, Hirono I et al (2001) Construction and characterization of BAC libraries for three fish species; rainbow trout, carp and tilapia. Anim Genet 32:200–204

    Article  PubMed  CAS  Google Scholar 

  • Kause A, Ritola O, Paananen T, Eskelinen U, Mäntysaari T (2003) Big and beautiful? Quantitative genetic parameters for appearance of large rainbow trout. J Fish Biol 62:610–622

    Article  Google Scholar 

  • Kincaid H (1983) Results from six generations of selection for accelerated growth rate in a rainbow trout population. The future of aquaculture in North America, Fish Cult Sect, Am Fish Soc 26–27

    Google Scholar 

  • Kincaid H, Bridges W, Von Limbach B (1977) Three generations of selection for growth rate in fall spawning rainbow trout. Trans Am Fish Soc 106:621–629

    Article  Google Scholar 

  • Kirpichnikov V (1981) Genetic bases of fish selection. Springer, Berlin

    Google Scholar 

  • Kolstad K, Heuch P, Gjerde B, Gjedrem T, Salte R (2005) Genetic variation in resistance of Atlantic salmon to the salmon louse Lepeophtheirus salmonis. Aquaculture 247:145–152

    Article  CAS  Google Scholar 

  • Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M (1987) MAPMAKER – an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lam N (2002) Caracterización de los Cromosomas Sexuales en Dos Especies de Salmónidos Mediante Estudios Citogenéticos y de Marcadores Moleculares. Master Thesis, Universidad de Chile

    Google Scholar 

  • Lam N, Ocalewicz K, Iturra P (2005) OmyP9 sex probe application to identify the Y-chromosomes of androgenetic rainbow trout from rutki strain. Aquaculture 247:22

    Google Scholar 

  • Lin S, Chakravarti A, Cutler D (2004) Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat Genet 36:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Lindner K, Spruell P, Knudsen K, Reedy D, Pilgrim K et al (1999) Construction of a linkage map for the pink salmon genome. In: Abstracts of the plant and animal genome VII conference, San Diego, Jan 1999

    Google Scholar 

  • Lu G, Bernatchez L (1988) Experimental evidence for reduced hybrid viability between dwarf and normal ecotypes of lake whitefish (Coregonus clupeaformis, Mitchill). Proc R Soc Lond B Biol Sci 265:1025–1030

    Google Scholar 

  • Mahapatra K, Meher P, Saha J, Gjerde B, Reddy et al (2000) Selection response of rohu, Labeo rohita (Ham.), after two generations of selective breeding. In: Abstracts of the fifth Indian fish forum at CIFA, Bhubaneswar, Jan 2000

    Google Scholar 

  • Manly K, Olson J (1999) Overview of QTL mapping software and introduction to Map manager QT. Mamm Genom 10:335–348

    Article  Google Scholar 

  • Marshall A, Knudsen K, Allendorf F (2004) Linkage disequilibrium between the pseudoautosomal PEPB-1 locus and the sex-determining region of chinook salmon. Heredity 93:85–97

    Article  PubMed  CAS  Google Scholar 

  • Martinez V, Hill W, Knott S (2002) On the use of double haploids for detecting QTL in outbreed population. Heredity 88:423–431

    Article  PubMed  CAS  Google Scholar 

  • Martins C, Galetti P (2001) Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 111:439–446

    Article  PubMed  CAS  Google Scholar 

  • Martyniuk C, Perry G, Mogahadam M, Ferguson M, Danzmann R (2003) The genetic architecture of correlations among growth-related traits and male age at maturation in rainbow trout. J Fish Biol 63:746–764

    Article  Google Scholar 

  • May B, Johnson K (1990) Composite linkage map of salmonid fishes. In: O’Brien SJ (ed) Genetics maps, 5th edn. Cold Spring Harbor, Cold Spring Harbor, 4151–4159

    Google Scholar 

  • Michelmore R, Param I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Moen T, Hoyheim B, Munk H, Gomez-Raya L (2004a) A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet 35:81–92

    Article  CAS  Google Scholar 

  • Moen T, Fjalestad K, Munk H, Gomez-Raya L (2004b) A multistage testing strategy for detection of quantitative trait loci affecting disease resistance in Atlantic salmon. Genetics 167:851–858

    Article  CAS  Google Scholar 

  • Moran P, Martinez J, Garcia-Vaquez E, Pendas A (1996) Sex chromosome linkage of 5SrDNA in rainbow trout (Oncorhynchus mykiss). Cytogenet Cell Genet 75:145–159

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Ozaki A, Akutsu T, Iwai K, Sakamoto T et al (2001) Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265:687–693

    Article  PubMed  CAS  Google Scholar 

  • Neave F (1958) The origin and speciation of Oncorhynchus. Trans R Soc Can 551:25–39

    Google Scholar 

  • Neira R, Lhorente J, Araneda C, Díaz N, Bustos E et al (2004) Studies on carcass quality traits in two populations of Coho salmon (Oncorhynchus kisutch): phenotypic and genetic parameters. Aquaculture 241:117–241

    Article  Google Scholar 

  • Neira R, Díaz N, Gal G, Gallardo J, Lhorente J, Manterola R (2006a) Genetic improvement in coho salmon (Oncorhynchus kisutch) I: selection response and inbreeding depression on harvest weight. Aquaculture 257:9–17

    Article  Google Scholar 

  • Neira R, Díaz N, Gall G, Gallardo J, Lhorente J et al (2006b) Genetic improvement in coho salmon (Oncorhynchus kisutch) II: selection response for early spawning date. Aquaculture 257:1–8

    Article  Google Scholar 

  • Nell J, Smith I, Sheridan A (1999) Third generation evaluation of Sydney rock oyster Saccostrea commercialise (Iredale and Roughley) breeding lines. Aquaculture 170:195–203

    Article  Google Scholar 

  • Nichols K, Young W, Danzmann R, Robison B, Rexroad C et al (2003a) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  CAS  Google Scholar 

  • Nichols K, Bartholomew J, Thorgaard G (2003b) Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in Oncorhynchus mykiss. Dis Aquat Organ 56:145–154

    Article  CAS  Google Scholar 

  • Nichols K, Wheeler P, Thorgaard G (2004) Quantitative trait loci analyses for meristic traits in Oncorhynchus mykiss. Environ Biol Fishes 69:317–331

    Article  Google Scholar 

  • Noakes MA, Phillips RB (2003) OtY1 is a Y-linked marker in Chinook salmon but not in rainbow trout. Anim Genet 34:156–157

    Article  PubMed  CAS  Google Scholar 

  • Norris A, Bradley D, Cunningham E (2000) Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture 182:73–83

    Article  Google Scholar 

  • Ocalewicz K (2002) Cytogenetic markers for X chromosome in a karyotype of rainbow trout from Rutki strain (Poland). Folia Biol (Krakow) 50:13–16

    Google Scholar 

  • Ocalewicz K, Sliwinska A, Jankun M (2004a) Autosomal localization of interstitial telomeric sites (ITS) in brook trout, Salvelinus fontinalis (Pisces, Salmonidae) Cytogenet Genome Res 105:79–82

    Article  CAS  Google Scholar 

  • Ocalewicz K, Babiak I, Dobosz S, Nowaczyk J, Goryczko K (2004b) The stability of telomereless chromosome fragments in adult androgenetic rainbow trout. J Exp Biol 207:2229–2236

    Article  CAS  Google Scholar 

  • Ojima Y, Maeki K, Takayama S, Nogusa S (1963) A cytotaxonomic study on the Salmonidae. Nucleus 6:91–98

    Google Scholar 

  • Okamoto N, Tayama T, Kawanobe M, Fujiki N, Yasuda Y, Sano T (1993) Resistance of rainbow trout strain to infectious pancreatic necrosis. Aquaculture 117:17–76

    Article  Google Scholar 

  • O’Malley K, Sakamoto T, Danzmann R, Ferguson M (2002) Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94:273–284

    Article  CAS  Google Scholar 

  • Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra M, Akutsu T, Okamoto N (2001) Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265:23–31

    Article  PubMed  CAS  Google Scholar 

  • Palti Y, Parsons J, Thorgaard G (1999) Identification of candidate DNA markers associated with IHN virus resistance in backcrosses of rainbow (Oncorhynchus mykiss) and cutthroat trout (O. clarkis). Aquaculture 173:81–94

    Article  CAS  Google Scholar 

  • Palti Y, Gahr S, Hansen J, Rexroad C (2004) Characterization of a new BAC library for rainbow trout: evidence for multi-locus duplication. Anim Genet 351:30–133

    Google Scholar 

  • Pardo B, Castro J, Martínez P, Sánchez L (2000) Brown trout 5S rDNA maps to chromosome 38. Chromosome Res 8:657

    Article  PubMed  CAS  Google Scholar 

  • Pearson J, Thorgaard G (1985) Production of androgenetic diploid rainbow trout. J Hered 76:177–181

    Google Scholar 

  • Pendas A, Moran P, Garcia-Vazquez E (1993a) Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Cell Genet 63:128–130

    Article  CAS  Google Scholar 

  • Pendas A, Moran P, Garcia-Vazquez E (1993b) Multi-chromosomal location of ribosomal RNA genes and heterochromatin association in brown trout. Chromosome Res 1:63–67

    Article  CAS  Google Scholar 

  • Pendas A, Moran P, Garcia-Vazquez E (1994) Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma 103:147–152

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Moran P, Garcia-Vazquez E (1999) Physical mapping of three minisatellite sequences in the Atlantic salmon (Salmo salar) genome. Anim Genet 30:371–374

    Article  CAS  Google Scholar 

  • Perez J, Moran P, Garcia-Vazquez E (2000) Isolation, characterization, and chromosomal location of the tRNA(Met) genes in Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) Genome 43:185–190

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Danzmann R, Ferguson M, Gibson J (2001) Quantitative trait loci for upper thermal tolerance in outbreed strain of rainbow trout (Oncorhynchus mykiss). Heredity 86:333–341

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Ferguson M, Sakamoto T, Danzmann R (2005) Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. J Hered 96:1–11

    Google Scholar 

  • Phillips R, Ihssen P (1985) Identification of sex chromosomes in lake trout (Salvelinus namaycush). Cytogenet Cell Genet 39:14–18

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Hartley S (1988) Fluorescent banding patterns of the chromosomes of the genus Salmo. Genome 3:193–197

    Google Scholar 

  • Phillips R, Reed K (1996) Application of fluorescence in situ hybridization (FISH) to fish genetics. Aquaculture 140:197–216

    Article  CAS  Google Scholar 

  • Phillips R, Oakley T (1997) Evolutionary relationships among salmonid fishes inferred from nuclear and mitochondrial sequences. In: Kocher T, Stepien C (eds) Molecular systematics of fishes. Academic, New York, 145–162

    Chapter  Google Scholar 

  • Phillips R, Ráb P (2001) Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1–25

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Konkol N, Reed K, Stein J (2001) Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo, and Salvelinus (Salmonidae). Genetica 111:119–123

    Article  Google Scholar 

  • Phillips R, Matsuoka M, Reed K (2002) Characterization of charr chromosomes using fluorescence in situ hybridization. Environ Biol Fishes 64:223–228

    Article  Google Scholar 

  • Phillips R, Zimmerman A, Noakes M, Palti Y, Morash M et al (2003) Physical and genetic mapping of the rainbow trout major histocompatibility regions: evidence for duplication of the class I region. Immunogenetics 55:561–569

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Noakes M, Morasch M, Felip A, Thorgaard G (2004) Does differential selection on the 5S rDNA explain why the rainbow trout sex chromosome heteromorphism is not linked to the sex locus? Cytogenet Genome Res 105:122–125

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, Nichols K, DeKoning J, Morasch M, Keatley K et al (2006) Assignment of rainbow trout linkage groups to specific chromosomes. Genetics 174:1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Phillips R, DeKoning J, Morasch M, Park L, Devlin R (2007) Identification of the sex chromosome pair in chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha). Cytogenet Genome Res 116:298–304

    Article  PubMed  CAS  Google Scholar 

  • Porto-Foresti F, Oliveira C, Tabata Y, Rigolino M, Foresti F (2002) NORs inheritance analysis in crossings including individuals from two stocks of rainbow trout (Oncorhynchus mykiss). Hereditas 136:227–230

    Article  PubMed  Google Scholar 

  • Quinn T, Peterson J, Gallucci V, Hershberger W, Brannon E (2002) Artificial selection and environmental change: countervailing factors affecting the timing of spawning by coho and chinook salmon. Trans Am Fish Soc 131:591–598

    Article  Google Scholar 

  • Reed K, Phillips R (1995) Molecular characterization and cytogenetic analysis of highly repetitive DNAs of lake trout, Salvelinus namaycush. Chromosoma 104:242–251

    Article  PubMed  CAS  Google Scholar 

  • Reid D, Szanto A, Glebe B, Danzmann R, Ferguson M (2005) QTL for body weight and condition factor in Atlantic salmon (Salmo salar): comparative analysis with rainbow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus). Heredity 94:166–172

    Article  PubMed  CAS  Google Scholar 

  • Rexroad C, Lee Y, Keele J, Karamycheva S, Brown G et al (2003) Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenet Genome Res 102:347–54

    Article  PubMed  Google Scholar 

  • Rexroad C, Rodriguez MF, Coulibaly I, Gharbi K, Danzmann R et al (2005) Comparative mapping of expressed sequence tags containing microsatellites in rainbow trout (Oncorhynchus mykiss). BMC Genomics 6:54–61

    Article  PubMed  CAS  Google Scholar 

  • Ristow S, Evans D, Jaso-Friedmann L (2000) Analyzing nonspecific cytotoxic cell in fish. In: Campbell K, Colonna M (eds) Methods in molecular biology, vol 121, Natural killer cells protocols: cellular and molecular methods. Humana, Totowa, 347–537

    Chapter  Google Scholar 

  • Robison B, Wheeler P, Thorgaard G (1999) Variation in development rate among clonal lines of rainbow trout (Oncorhynchus mykiss). Aquaculture 173:131–141

    Article  Google Scholar 

  • Robison B, Wheeler P, Sundin K, Sikka P, Thorgaard G (2001) Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). J Hered 92:16–22

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F, LaPatra S, Williams S, Famula T, May B (2004) Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow trout and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture 241:93–115

    Article  CAS  Google Scholar 

  • Rogers S, Bernatchez L (2005) Integrating QTL mapping and genome scans: towards the characterization of candidate loci under parallel selection in lake whitefish (Coregonus clupeaformis). Mol Ecol 14:351–361

    Article  PubMed  CAS  Google Scholar 

  • Rogers S, Campbell D, Baird S, Danzmann R, Bernatchez L (2001) Combining the analyses of introgression hybridization and linkage mapping to investigate the genetic architecture of population divergence in the lake whitefish (Coregonus clupeaformis, Mitchill). Genetica 111:25–41

    Article  PubMed  CAS  Google Scholar 

  • Rust M (2002) Nutritional physiology. In: Halver J, Hardy R (eds) Fish nutrition, 3rd edn. Academic, San Diego, 368–334

    Google Scholar 

  • Rye M, Eknath A (1999) Genetic improvement of tilapia through selective breeding – experience from Asia. Eur Aquaculture Soc, Special Publication 27:207–208

    Google Scholar 

  • Rye M, Refstie T (1995) Phenotypic and genetic parameters of body size traits in Atlantic salmon Salmo salar L. Aquaculture Res 26:875–885

    Article  Google Scholar 

  • Sadler S, Mcleod D, McKay L, Moccia R (1992) Selection for early spawning and repeatability of spawn date in rainbow trout. Aquaculture 100:103

    Article  Google Scholar 

  • Sakamoto T, Danzmann R, Okamoto N, Ferguson M, Ihssen P (1999) Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss). Aquaculture 173:33–43

    Article  CAS  Google Scholar 

  • Sakamoto T, Danzmann R, Gharbi K, Howard P, Ozaki A et al (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1313–1345

    Google Scholar 

  • Scott W, Crossman E (1973) Freshwater fishes of Canada. Fisheries Res Board Canada Bull, 184–966

    Google Scholar 

  • Sedgwick S (1988) Salmon farming handbook. Blackwell Science, Oxford

    Google Scholar 

  • Siitonen L, Gall G (1989) Response to selection for early spawn date in rainbow trout, Salmo gairdneri. Aquaculture 78:153–161

    Article  Google Scholar 

  • Slettan A, Olsaker I, Lie O (1997) Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploids genetics. Heredity 78:620–627

    Article  PubMed  CAS  Google Scholar 

  • Spielman R, McGinnis R, Ewens W (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    PubMed  CAS  Google Scholar 

  • Spruell P, Linder K, Knudsen K, Allendorf F (1999) Use of fluorescent technology for mapping in pink salmon. In: Abstracts of the plant and animal genome VII conference, San Diego, Jan 1999

    Google Scholar 

  • Stein J, Phillips R, Devlin B (2001) Identification of sex chromosomes in chinook salmon (Oncorhynchus tshawytscha). Cytogenet Cell Genet 92:108–110

    Article  PubMed  CAS  Google Scholar 

  • Stein J, Reed K, Wilson C, Phillips R (2002) A sex-linked microsatellite locus isolated from the Y chromosome of lake charr, Salvelinus namaycush. Environ Biol Fishes 64:211–216

    Article  Google Scholar 

  • Stephens J, Brown S, Lapitan N, Knudson L (2004) Physical mapping of barley genes using an ultrasensitive fluorescence in situ hybridization technique. Genome 47:179–189

    Article  PubMed  CAS  Google Scholar 

  • Su G, Liljedahl L-E, Gall G (1999) Estimates of phenotypic and genetic parameters for within-season date and age at spawning of female rainbow trout. Aquaculture 171:209–220

    Article  Google Scholar 

  • Sundin K, Brown K, Drew R, Nichols K, Wheeler P et al (2005) Genetic analysis of a development rate QTL in backcrosses of clonal rainbow trout, Oncorhynchus mykiss. Aquaculture 247:75–83

    Article  CAS  Google Scholar 

  • Tao W, Bouding E (2003) Associations between single nucleotide polymorphism in candidate genes and growth rate in Arctic charr (Salvelinis alpinus L.). Heredity 91:60–69

    Article  PubMed  CAS  Google Scholar 

  • Tchernavin V (1939) The origin of salmon. Salmon Trout Mag 95:1–21

    Google Scholar 

  • Thorgaard G (1977) Heteromorphic sex chromosomes in male rainbow trout. Science 196:900–902

    Article  PubMed  CAS  Google Scholar 

  • Thorgaard G (1978) Sex chromosomes in the sockeye salmon: a Y autosome fusion. Can J Genet Cytol 29:349–354

    Google Scholar 

  • Thorgaard G, Allendorf F, Knudsen K (1983) Gene-centromere mapping in rainbow trout: high interference over long map distances. Genetics 103:771–783

    PubMed  CAS  Google Scholar 

  • Thorud K, Djupvik H (1988) Infectious salmon anemia in Atlantic salmon (Salmo salar L.). Bull Eur Assoc Fish Pathology 8:109–111

    Google Scholar 

  • Trichet V, Buisine N, Mouchel N, Moran P, Pendas A (2000) Genomic analysis of the vitellogenin locus in rainbow trout (Oncorhynchus mykiss) reveals a complex history of gene amplification and retroposon activity. Mol Gen Genet 263:828–837

    Article  PubMed  CAS  Google Scholar 

  • Utter F, Allendorf F (1994) Phylogenetic relationships among species of Oncorhynchus: a consensus view. Conserv Biol 8:864–867

    Article  Google Scholar 

  • Verspoor E, Moyes C (2005) Evidence for co-dominant allelic expression of a phosphoglucomutase regulatory locus polymorphism in the Atlantic salmon. J Fish Biol 67(Suppl A):213–218

    Article  CAS  Google Scholar 

  • Viñas A, Abuin M, Pardo BG, Martinez P, Sanchez L (2004) Characterization of a new HpaI centromeric satellite DNA in Salmo salar. Genetica 121:81–87

    Article  PubMed  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T et al (1995) AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Willoughby S (1999) Manual of salmonid farming. Blackwell Science, Oxford

    Google Scholar 

  • Woram R, Gharbi K, Sakamoto T, Hoyheim B, Holm L-E, et al (2003) Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res 13:272–280

    Article  PubMed  CAS  Google Scholar 

  • Woram R, McGowan C, Stout J, Gharbi K, Ferguson M et al (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid pure strain mapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wright J, Johnson K, Hollister A, May B (1983) Meiotic models to explain classical linkage, pseudolinkage, and chromosomal pairing in tetraploid derivative salmonid genomes. Isozymes Curr Top Biol Med Res 10:239–260

    PubMed  Google Scholar 

  • Yamazaki F (1983) Sex control and manipulation in fish. Aquaculture 33:329–354

    Article  Google Scholar 

  • Young W, Wheeler P, Fields R, Thorgaard G (1996) DNA fingerprinting confirms isogenicity of androgenetically derived rainbow trout lines. J Hered 87:77–81

    PubMed  CAS  Google Scholar 

  • Young W, Wheeler P, Coryell V, Keim P, Thorgaard G (1998) A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148:839–850

    PubMed  CAS  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Q, Nakayama I, Fujiwara A, Kobayashi T, Oohara I et al (2001) Sex identification by male-specific growth hormone pseudogene (GH-ψ) in Oncorhynchus masou complex and related hybrid. Genetica 111:111–118

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman A, Evenhius P, Thorgaard G, Ristow S (2004) A single major chromosomal region controls natural killer cell-like activity in rainbow trout. Immunogenetics 55:825–835

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman A, Wheeler P, Ristow S, Thorgaard G (2005) Composite interval mapping reveals three QTL associated with pyloric caeca number in rainbow trout, Oncorhynchus mykiss. Aquaculture 247:85–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Araneda, C., Neira, R., Lam, N., Iturra, P. (2008). Salmonids. In: Kocher, T., Kole, C. (eds) Genome Mapping and Genomics in Fishes and Aquatic Animals. Genome Mapping Genomics Animals, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73837-4_1

Download citation

Publish with us

Policies and ethics