Skip to main content

What Might “Understand a Function” Mean?

  • Conference paper
Towards Mechanized Mathematical Assistants (MKM 2007, Calculemus 2007)

Abstract

Many functions in classical mathematics are largely defined in terms of their derivatives, so Bessel’s function is “the” solution of Bessel’s equation, etc. For definiteness, we need to add other properties, such as initial values, branch cuts, etc. What actually makes up “the definition” of a function in computer algebra? The answer turns out to be a combination of arithmetic and analytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. US Government Printing Office (1964)

    Google Scholar 

  2. Avitzur, R., Bachmann, O., Kajler, N.: From Honest to Intelligent Plotting. RIACA Technical Report 5 (1995)

    Google Scholar 

  3. Baddoura, J.: A conjecture on integration in finite terms with elementary functions and polylogarithms. In: Proceedings ISSAC 1994, pp. 158–162 (1994)

    Google Scholar 

  4. Beaumont, J.C., Bradford, R.J., Davenport, J.H., Phisanbut, N.: Adherence is Better Than Adjacency. In: Kauers, M. (ed.) Proceedings ISSAC 2005, pp. 37–44 (2005)

    Google Scholar 

  5. Bronstein, M.: Symbolic Integration I, 2nd edn. Springer-Verlag, Heidelberg (2005)

    MATH  Google Scholar 

  6. Bronstein, M., Corless, R., Davenport, J.H., Jeffrey, D.J.: Algebraic properties of the Lambert W function from a result of Rosenstein and Liouville. To appear in J. Integral Transforms and Special Functions (2007)

    Google Scholar 

  7. Cherry, G.W.: Integration in Finite Terms with Special Functions: the Error Function. J. Symbolic Comp. 1, 283–302 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cherry, G.W.: Integration in Finite Terms with Special Functions: the Logarithmic Integral. SIAM J. Computing 15, 1–21 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Corless, R.M., Davenport, J.H., Jeffrey, D.J., Watt, S.M.: According to Abramowitz and Stegun. SIGSAM Bulletin 2, 34, 58–65 (2000)

    Article  Google Scholar 

  10. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W Function. Advances in Computational Mathematics 5, 329–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davenport, J.H.: y’+fy=g. In: Fitch, J. (ed.) EUROSAM 1984. LNCS, vol. 174, pp. 341–350. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  12. Davenport, J.H.: Equality in computer algebra and beyond. J. Symbolic Comp. 34, 259–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. United States Naval Observatory Astronomy Application Department. Frequently Asked Questions (2004), http://aa.usno.navy.mil/faq/docs

  14. Dubinova, I.D.: Exact solution of some nonlinear differential equations. Diff. Eq. 40, 1195–1196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flajolet, P., Gerhold, S., Salvy, B.: On the non-holonomic character of logarithms, powers, and the n-th prime function (2005), http://arxiv.org/abs/math.CO/0501379

  16. Hölder, O.: Über die Eigenschaft der Gamma Funktion keineralgebraischen Differentialgleichungen zu genügen. Math. Ann. 28, 1–13 (1887)

    Article  Google Scholar 

  17. Jeffrey, D.J., Hare, D.E.G., Corless, R.M.: Unwinding the branches of the Lambert W function. Mathematical Scientist 21, 1–7 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Kahan, W.: Branch Cuts for Complex Elementary Functions. The State of Art in Numerical Analysis, pp. 165–211 (1987)

    Google Scholar 

  19. Knowles, P.H.: Integration of a Class of Transcendental Liouvillian Functions with Error Functions Part I. J. Symbolic Comp. 13, 525–543 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Knowles, P.H.: Integration of a Class of Transcendental Liouvillian Functions with Error Functions Part II. J. Symbolic Comp. 16, 227–241 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kolchin, E.: Algebraic groups and algebraic dependence. Amer. J. Math. 90, 1151–1164 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kovacic, J.J.: An Algorithm for Solving Second Order Linear Homogeneous Differential Equations. J. Symbolic Comp. 2, 3–43 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meunier, L., Salvy, B.: ESF: An Automatically Generated Encyclopedia of Special Functions. In: Sendra, J.R. (ed.) Proceedings ISSAC 2003, pp. 199–206 (2003)

    Google Scholar 

  24. Moses, J.: Towards a General Theory of Special Functions. Comm. ACM 15, 550–554 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nickalls, R.W.D.: A New Approach to Solving the Cubic: Cardan’s Solution Revealed. Math. Gazette 77, 354–359 (1993)

    Article  Google Scholar 

  26. Rich, A.D., Jeffrey, D.J.: Function Evaluation on Branch Cuts. SIGSAM Bulletin 2, 30, 25–27 (1996)

    Article  Google Scholar 

  27. Risch, R.H.: The Problem of Integration in Finite Terms. Trans. A.M.S. 139, 167–189 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Singer, M.F.: Solving Homogeneous Linear Differential Equations in Terms of Second Order Linear Differential Equations. Amer J. Math. 107, 663–696 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Singer, M.F.: Liouvillian solutions of linear differential equations with Liouvillian coefficients. J. Symbolic Comp. 11, 251–273 (1991)

    Article  MATH  Google Scholar 

  30. Singer, M.F., Saunders, B.D., Caviness, B.F.: An Extension of Liouville’s Theorem on Integration in Finite Terms. SIAM J. Comp. 14, 966–990 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stoutemyer, D.R.: Should computer algebra programs use ln x or ln |x| as their antiderivation of 1/x. DERIVE Newsletter 26, pp. 3–6 (Jun 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Kauers Manfred Kerber Robert Miner Wolfgang Windsteiger

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Davenport, J.H. (2007). What Might “Understand a Function” Mean?. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds) Towards Mechanized Mathematical Assistants. MKM Calculemus 2007 2007. Lecture Notes in Computer Science(), vol 4573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73086-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73086-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73083-5

  • Online ISBN: 978-3-540-73086-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics