Skip to main content

EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills

  • Conference paper
User Modeling 2007 (UM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4511))

Included in the following conference series:

Abstract

We have begun to model changes in electroencephalography (EEG)-derived measures of cognitive workload, engagement and distraction as individuals developed and refined their problem solving skills in science. For the same problem solving scenario(s) there were significant differences in the levels and dynamics of these three metrics. As expected, workload increased when students were presented with problem sets of greater difficulty. Less expected, however, was the finding that as skills increased, the levels of workload did not decrease accordingly. When these indices were measured across the navigation, decision, and display events within the simulations significant differences in workload and engagement were often observed. Similarly, event-related differences in these categories across a series of the tasks were also often observed, but were highly variable across individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R.: Acquisition of Cognitive Skill. Psychological Review 89, 369–406 (1982)

    Article  Google Scholar 

  2. Berka, C., Levendowski, D.J., Cvetinovic, M.M., Davis, G.F., Lumicao, M.N., Popovic, M.V., Zivkovic, V.T., Olmstead, R.E.: Real-Time Analysis of EEG Indices of Alertness, Cognition and Memory Acquired with a Wireless EEG Headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)

    Article  Google Scholar 

  3. Berka, C., Levendowski, D.J., Ramsey, C.K., Davis, G., Lumicao, M.N., Stanney, K., Reeves, L., Harkness, R.S., Tremoulet, P.D., Stibler, K.: Evaluation of an EEG-Workload Model in an Aegis Simulation, Biomonitoring for Physiological and Cognitive Performance during Military Operations. In: Caldwell, J., Wesentsten, N.J. (eds.) Proceddings of SPIE, vol. 5797, pp. 90–99 (2005)

    Google Scholar 

  4. Ericsson, K.A.: Deliberate Practice and the Acquisition and Maintenance of Expert Performance in Medicine and Related Domains. Academic Medicine 79(10), 70–81 (2004)

    Article  Google Scholar 

  5. Fabiani, M., Gratton, G., Coles, M.G.: Event-related Brain Potentials. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, pp. 53–84. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Haider, H., Frensch, P.A.: The Role of Information Reduction in Skill Acquisition. Cognitive Psychology 30, 304–337 (1996)

    Article  Google Scholar 

  7. Igbal, S.T., Adamczyk, P.D., Zheng, X.S., Bailey, B.P.: Towards an Index of Opportunity: Understanding Changes in Mental Workload During Task Execution. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, Portland, Oregon. USA (2005)

    Google Scholar 

  8. Lee, J.C., Tan, D.S.: Using a Low-cost Electroencephalogramph for Task Classification in HCI Research. In: UIST 2006. Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (Montreux, Switzerland, October 15-18, pp. 81–90. ACM Press, New York, NY (2006)

    Chapter  Google Scholar 

  9. Poythress, M., Russell, C., Siegel, S., Tremoulet, P.D., Craven, P.L., Berka, C., Levendowski, D.J., Chang, D., Baskin, A., Champney, R., Hale, K., Milham, L.: Correlation between Expected Workload and EEG Indices of Cognitive Workload and Task Engagement. In: Proceedings of 2nd Annual Augmented Cognition International Conference, San Francisco, CA (in press)

    Google Scholar 

  10. Schneider, W., Shiffrin, R.M.: Controlled and Automatic Human Information Processing I: Detection, Search, and Attention. Psychological Reviews 84, 1–66 (1977)

    Article  Google Scholar 

  11. Stevens, R., Casillas, A.: Artificial Neural Networks. In: Mislevy, R.E., Williamson, D.M., Bejar, I. (eds.) Automated Scoring, pp. 259–312. Lawrence Erlbaum, Mahwah (2006)

    Google Scholar 

  12. Stevens, R., Johnson, D.F., Soller, A.: Probabilities and Predictions: Modeling the Development of Scientific Competence. Cell Biology Education, vol. 4(1), pp. 42–57. The American Society for Cell Biology (2005)

    Google Scholar 

  13. Stevens, R., Soller, A., Cooper, M., Sprang, M.: Modeling the Development of Problem Solving Skills in Chemistry with a Web-Based Tutor. In: Lester, J.C., Vicari, R.M., Paraguaca, F. (eds.) Intelligent Tutoring Systems. 7th International Conference Proceedings, pp. 580–591. Springer-Verlag, Berlin Heidelberg, Germany (2004)

    Google Scholar 

  14. Stevens, R., Wang, P., Lopo, A.: Artificial Neural Networks can Distinguish Novice and Expert Strategies during Complex Problem Solving. JAMIA 3(2), 131–138 (1996)

    Google Scholar 

  15. VanLehn, K.: Cognitive Skill Acquisition. Psychology 47, 513–539 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cristina Conati Kathleen McCoy Georgios Paliouras

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stevens, R.H., Galloway, T., Berka, C. (2007). EEG-Related Changes in Cognitive Workload, Engagement and Distraction as Students Acquire Problem Solving Skills. In: Conati, C., McCoy, K., Paliouras, G. (eds) User Modeling 2007. UM 2007. Lecture Notes in Computer Science(), vol 4511. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73078-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73078-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73077-4

  • Online ISBN: 978-3-540-73078-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics