Skip to main content

Dynamics of Neural Networks - Some Qualitative Properties

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

All neural networks, both natural and artificial, are characterized by two kinds of dynamics. The first one is concerned with what we would call “learning dynamics”, in fact the sequential (discrete time) dynamics of the choice of synaptic weights. The second one is the intrinsic dynamics of the neural network viewed as a dynamical system after the weights have been established via learning. The paper deals with the second kind of dynamics. Since the emergent computational capabilities of a recurrent neural network can be achieved provided it has suitable dynamical properties when viewed as a system with several equilibria, the paper deals with those qualitative properties connected to the achievement of such dynamical properties, more precisely the gradient like behavior. In the case of the neural networks with delays, these aspects are reformulated in accordance with the state of the art of the theory of delay dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bélair, J., Campbell, S.A., van den Driessche, P.: Frustration, stability and delay induced oscillations in a neural network model. SIAM J. Appl. Math. 56, 254–265 (1996)

    Article  Google Scholar 

  2. Danciu, D.: Qualitative behavior of the time delay Hopfield type neural networks with time varying stimulus. Annals of The University of Craiova, Series: Electrical Engineering (Automatics, Computers, Electronics) 26, 72–82 (2002)

    Google Scholar 

  3. Danciu, D., Răsvan, V.: On Popov-type Stability Criteria for Neural Networks. Electronic Journal on Qualitative Theory of Differential Equations (Proc. 6th Coll. Qualitative Theory of Differential Equations QTDE) 23 (2000), http://www.math.u-szeged.hu/ejqtde/6/623.pdf

  4. Danciu, D., Răsvan, V.: Gradient-like behaviour for Hopfield-type neural networks with delay. In: Proc. of The 3rd Int. Workshop on Intelligent Control Systems ICS’2001, pp. 20–24. Printech, Bucharest (2001)

    Google Scholar 

  5. Driessche, P.: Global attractivity in delayed Hopfield neural networks. SIAM J. Appl. Math. 58, 1878–1890 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fink, W.: Neural attractor network for application in visual field data classification. Phys. Med. Biol. 49, 2799–2809 (2004)

    Article  Google Scholar 

  7. Fortuna, L., Balya, D., Zarandy, A.: Cellular Neural Networks. IEEE Circuits and Systems Magazine 4, 6–21 (2001)

    Article  Google Scholar 

  8. Gelig, A.K.: Dynamics of pulse systems and neural networks (in Russian). Leningrad Univ. Publishing House, Leningrad (1982)

    Google Scholar 

  9. Gelig, A.K., Leonov, G.A., Yakubovich, V.A.: Stability of the systems with non-unique equilibrium points (in Russian). Nauka, Moscow (1978)

    Google Scholar 

  10. Gopalsamy, K., He, X.: Stability in asymmetric Hopfield nets with transmission delays. Physica D 76, 344–358 (1994)

    MATH  MathSciNet  Google Scholar 

  11. Halanay, A.: Invariant manifolds for systems with time lag. In: Hale, J.K., La Salle, J.P. (eds.) Differential and dynamical systems, pp. 199–213. Acad. Press, New York (1967)

    Google Scholar 

  12. Halanay, A., Răsvan, V.: Applications of Liapunov Methods to Stability. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  13. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  14. Kharitonov, V.L., Zhabko, A.P.: Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica 39, 15–20 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kitamura, S., Hirai, K., Nishimura, M.: Stability of a Control System with Several Nonlinear Elements and Time Lags. Technology Repts. Osaka Univ. 17, 93–102 (1967)

    Google Scholar 

  16. König, P., Schillen, J.B.: Stimulus dependent assembly formation of oscillatory responses: I. Synchronization. Neural Computation 3, 155–166 (1991)

    Article  Google Scholar 

  17. Kopell, N.: We got the rhythm: dynamical systems of the nervous system. Notices AMS 47, 6–16 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Pendulum like Feedback Systems. Teubner Verlag, Leipzig (1992)

    MATH  Google Scholar 

  19. Nishimura, M., Kitamura, S.: A Lyapunov Functional for Systems with Multiple Non-linearities and Time Lags. Technology Repts. Osaka Univ. 19, 83–88 (1969)

    Google Scholar 

  20. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Automatic Identification of Diabetic Retinal Exudates in Digital Colour Images. British Journal of Ophthalmology 87(10), 1220–1223 (2003)

    Article  Google Scholar 

  21. Osareh, A.: Automated Identification of Diabetic Retinal Exudates and the Optic Disc. PhD Thesis, Bristol University, Faculty of Engineering, Department of Computer Science (2004)

    Google Scholar 

  22. Popov, V.M.: Monotonicity and Mutability. Journ. Diff. Eqs. 31, 337–358 (1979)

    Article  MATH  Google Scholar 

  23. Răsvan, V.: Dynamical Systems with Several Equilibria and Natural Liapunov Functions. Archivum mathematicum 34, 207–215 (1998)

    MATH  Google Scholar 

  24. Răsvan, V., Danciu, D.: Neural networks - global behavior versus delay. Periodica Politechnica. Trans. Autom. Control and Comp. Sci. 49(63), 11–14 (2004)

    Google Scholar 

  25. Saperstone, S.: Semidynamical Systems in Infinite Dimensional Spaces. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  26. Yi, Z.: Global exponential stability and periodic solutions of delay Hopfield neural netorks. Int. Journ. Syst. Sci. 27, 227–231 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danciu, D., Răsvan, V. (2007). Dynamics of Neural Networks - Some Qualitative Properties. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics