Skip to main content

The Fermi—Pasta—Ulam Problem and the Metastability Perspective

  • Chapter
The Fermi-Pasta-Ulam Problem

Part of the book series: Lecture Notes in Physics ((LNP,volume 728))

Abstract

A review is given of the works on the FPU problem that were particularly relevant in connection with the metastability perspective, proposed in the year 1982. The idea is that there exists a specific energy threshold above which the time-averages of the relevant quantities quickly agree with the predictions of classical equilibrium statistical mechanics, whereas below it there exist two time scales. First there is a quick formation of a packet of low-frequency modes which do share the energy, and this produces a metastable state that lasts for a long time; then the system attains the final equilibrium state. There are strong indications that the specific energy threshold does not vanish in the limit of infinitely many particles. The review is given for the case of a one-dimensional FPU chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, in E. Fermi: Note e Memorie (Collected Papers), Vol. II, No. 266. 977–988 (Accademia Nazionale dei Lincei, Roma, and The University of Chicago Press, Chicago 1965).

    Google Scholar 

  2. D.K. Campbell, P. Rosenau and G. Zaslavsky, Introduction: the Fermi-Pasta-Ulam problem—the first fifty years, Chaos 15, 015101 (2005), and the papers following it.

    Article  ADS  Google Scholar 

  3. T.P. Weissert, The genesis of simulation in dynamics; pursuing the Fermi-Pasta-Ulam problem. Springer, New York, 1997.

    MATH  Google Scholar 

  4. N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243 (1965).

    Article  ADS  MATH  Google Scholar 

  5. F.M. Izrailev and B.V. Chirikov, Statistical properties of a nonlinear string, Sov. Phys. Dokl. 11, 30–34 (1966).

    ADS  Google Scholar 

  6. F.M. Izrailev, A.I. Khisamutdinov and B.V. Chirikov, Numerical experiments with a chain of coupled anharmonic oscillators, Report 252, Institute of Nuclear Physics, Novosibirsk, URSS, 1968 (English translation: LA 4440 TR, Los Alamos. 1970).

    Google Scholar 

  7. D.I. Shepelyansky, Low-energy chaos in the Fermi–Pasta–Ulam problem, Nonlinearity 10, 1331–1338 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. A. Ponno, The FPU problem in the thermodynamic limit: scaling laws of the energy cascade, in P. Collet et al. eds, Chaotic dynamics and transport in classical and quantum systems. Kluwer, Dordrecht, 2005, pp. 431–440.

    Chapter  Google Scholar 

  9. P. Bocchieri, A. Scotti, B. Bearzi and A. Loinger, Anharmonic chain with Lennard-Jones interaction, Phys. Rev. A 2, 2013–2019 (1970).

    Article  ADS  Google Scholar 

  10. L. Galgani and A. Scotti, Planck-like distribution in classical nonlinear mechanics, Phys. Rev. Lett. 28, 1173–1176 (1972).

    Article  ADS  Google Scholar 

  11. C. Cercignani, L. Galgani and A. Scotti, Zero-point energy in classical nonlinear mechanics, Phys. Lett. A 38, 403 (1972); C. Cercignani, On a nonquantum derivation of Planck’s distribution law, Found. Phys. Lett. 11, 189–199 (1998).

    Article  ADS  Google Scholar 

  12. L. Galgani and A. Scotti, Recent progress in classical nonlinear dynamics, Rivista Nuovo Cim. 2, 189–209 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Fucito, F. Marchesoni, E. Marinari, G. Parisi, L. Peliti, S. Ruffo and A. Vulpiani, Approach to equilibrium in a chain of nonlinear oscillators, J. Phys., 43, 707–713 (1982).

    MathSciNet  Google Scholar 

  14. L. Berchialla, L. Galgani and A. Giorgilli, Localization of energy in FPU chains, Discr. Cont. Dyn. Syst. A 11, 855–866 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Carati and L. Galgani, On the specific heat of the Fermi–Pasta–Ulam systems and their glassy behavior, J. Stat. Phys. 94 859–869 (1999).

    Article  MATH  Google Scholar 

  16. A. Carati, P. Cipriani and L. Galgani, On the definition of temperature in FPU systems, J. Stat. Phys. 115, 1119–1130 (2004).

    Article  Google Scholar 

  17. D. Bambusi and A. Ponno, On metastability in FPU, Comm. Math. Phys., 264(2), 539–561 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Carati, An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit, preprint.

    Google Scholar 

  19. D. Bambusi and A. Giorgilli, Exponential stability of states close to resonance in infinite-dimensional Hamiltonian systems, J. Stat. Phys. 71, 569–606 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G. Benettin, Time scales for energy euipartition in a two-dimensional FPU model, Chaos 15, 015108 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Marcelli and A. Tenenbaum, Quantumlike short-time behavior of a classical crystal, Phys. Rev. E 68, 041112 (2003).

    Article  ADS  Google Scholar 

  22. H. Poincaré, Méthodes nouvelles de la mécanique céleste, Vol. I, Chap. 5.

    Google Scholar 

  23. E. Fermi, Beweiss das ein mechanisches Normalsystem im allgemeinen quasi-ergodisch ist, Phys. Zeits. 24, 261–265 (1923); über die Existenz quasi-ergodischer Systeme, Phys. Zeits. 25, 166–167 (1924), in Note e Memorie (Collected Papers), Vol. I, No. 11: 79–87 Accademia Nazionale dei Lincei, Roma, and The University of Chicago Press, Chicago, 1965.

    Google Scholar 

  24. G. Benettin, G. Ferrari, L. Galgani and A. Giorgilli, An extension of the Poincaré-Fermi theorem on the nonexistence of invariant manifolds in nearly integrable Hamiltonian systems, Nuovo Cim. B 72, 137–148 (1982); G. Benettin, L. Galgani and A. Giorgilli, Poincaréś non-existence theorem and classical perturbation theory in Nearly-Integrable Hamiltonian Systems, in Dynamics and Stochastic Processes, R. Livi and A. Politi, eds, Advances in Nonlinear World Scientific, Singapore, 1985.

    Google Scholar 

  25. J. von Neumann, Physical approach to the ergodic hypotesis, N.A.S. Proc. 18, 263–266 (1932), also in J. von Neumann, Collected works. H.A. Taub, ed., Pergamon Press, Oxford, 1961. Vol. II, No. 13, pp. 274–277.

    Article  MATH  Google Scholar 

  26. A. Carati, L. Galgani and A. Giorgilli, Dynamical systems and thermodynamics, in Encyclopedia of Mathematical Physics, Elsevier, Oxford (2006).

    Google Scholar 

  27. D. Poggi, S. Ruffo and H. Kantz, Shock waves and time scales to reach equipartition in the Fermi-Pasta-Ulam model, Phys. Rev. E 52, 307–315 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Lorenzoni and S. Paleari, Metastability and dispersive shock waves in the FPU system, Physica D 221 (2006), 110–117.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. A.N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk 98, 527 (1954); English translation in G. Casati and G. Ford, eds, Lecture Notes in Physics No. 93, Springer Verlag, Berlin, 1979. See also G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorovś theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cim. B 79, 201–223 (1984).

    MATH  MathSciNet  Google Scholar 

  30. A. Carati and L. Galgani, Analog of Planckś formula and effective temperature in classical statistical mechanics far from equilibrium, Phys. Rev. E 61, 4791–4794 (2000); A. Carati and L. Galgani, Einsteinś nonconventional conception of the photon, and the modern theory of dynamical systems, in J. Bricmont et al., eds, Chance in Physics, Lecture Notes in Physics No. 574, Springer, Berlin, 2001; A. Carati and Galgani, Planckś formula and glassy behavior in classical nonequilibrium statistical mechanics, Physica A 280, 105–114 (2000); L. Galgani, Relaxation times and the foundations of classical statistical mechanics in the light of modern perturbation theory, in G. Gallavotti and P.F. Zweifel, eds, non-linear evolution and chaotic phenomena, NATO ASI Series R71B: Vol. 176, Plenum Press, New York, 1988.

    Article  ADS  Google Scholar 

  31. A. Carati and L. Galgani, The theory of dynamical systems and the relations between classical and quantum mechanics, Found. Phys. 31, 69–87 (2001).

    Article  MathSciNet  Google Scholar 

  32. U. Frisch nad R. Morf, Intermittency in nonlinear dynamics and singularities at comlex times, Phys. Rev. A 23, 2673–2705 (1981).

    Article  ADS  Google Scholar 

  33. G.K. Batchelor, The theory of homogeneous turbulence, Cambridge U.P., Cambridge, 1960.

    MATH  Google Scholar 

  34. J. von Neumann, Recent theories of turbulence, in J. von Neumann, Collected works. H.A. Taub, ed., Pergamon Press, Oxford, 1961. Vol. VI, No. 32, pp. 437–472.

    Google Scholar 

  35. P. Butera, L. Galgani, A. Giorgilli, A. Tagliani and H. Sabata, Stochasticity thresholds in a lattice field theory, Nuovo Cim. B 59, 81–86 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  36. B. Bassetti, P. Butera, M. Raciti and M. Sparpaglione, Complex poles, spatial intermittencies, and energy transfer in a classical nonlinear string, Phys. Rev. A 30, 1033–1039 (1984).

    Article  ADS  Google Scholar 

  37. A. Carati, L. Galgani and A. Giorgilli, The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics, Chaos 15, 015105 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Ponno and D. Bambusi, Korteweg-de Vries equation and energy sharing in Fermi-Pasta-Ulam, Chaos 15, 015107 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Parisi, On the approach to equilibrium of a Hamiltonian chain of anharmonic oscillators, Europhys. Lett. 40, 357 (1997).

    Article  ADS  Google Scholar 

  40. F. Fucito, F.Marchesoni, M. Sparpaglione and A. Vulpiani, Intermittent behaviour in non-linear-Hamiltonian systems far from equilibrium, J. Phys. A 16, 117–124 (1983).

    Article  ADS  Google Scholar 

  41. A. Carati, L. Galgani and B. Pozzi, Levy flights in the Landau-Teller model of molecular collisions, Phys. Rev. Lett. 90, 010601 (2003).

    Article  ADS  Google Scholar 

  42. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione and A. Vulpiani, Relaxation to different stationary states in the FPU model, Phys. Rev. A 28, 3544–3552 (1983).

    Article  ADS  Google Scholar 

  43. R. Livi, S. Ruffo, M. Pettini and A. Vulpiani, Short-time asymptotics in classical nonlinear wave equations, Nuovo Cim. B 89, 120–130 (1985).

    Google Scholar 

  44. R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione and A. Vulpiani, Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model, Phys. Rev. A 31, 1039–1045 (1985).

    Article  ADS  Google Scholar 

  45. R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, Further results on the equipartition threshold in large nonlinear Hamiltonian systems, Phys. Rev. A 31, 2740–2742 (1985).

    Article  ADS  Google Scholar 

  46. G. Benettin, L. Galgani and A. Giorgilli, Boltzmannś ultraviolet cutoff and Nekhoroshevś theorem on Arnold diffusion, Nature 311, 444–445 (1984).

    Article  ADS  Google Scholar 

  47. A. Carati, L. Galgani and B. Pozzi, The problem of the rate of thermalization and the relations between classical and quantum mechanics, in M. Fabrizio et al., eds, Mathematical models and methods for smart materials, Series of Advances in Mathematics no. 62, World Scientific, Singapore, 2002.

    Google Scholar 

  48. N.N. Nekhoroshev, Russ. Math. Surv. 32, 1 (1977); in O.A. Oleinik, ed. Topics in modern mathematics: Petrovskii Sem. No. 5, Consultant Bureau, New York, 1985. See also G. Benettin, L. Galgani and A. Giorgilli, A proof of Nekhoroshevś theorem for the stability times in nearly integrable Hamiltonian systems, Celestial Mech. 37, 1–25 (1985); A. Giorgilli, On the problem of stability for near to integrable Hamiltonian systems, Proceedings of the International Congress of Mathematicians Berlin 1998, Vol. III, Documenta Mathematica, extra volume ICM 1998, 143–152 (1998); G. Benettin, The elements of Hamiltonian perturbation theory, in D. Benest, C. Froeschle’ and E. Lega eds, Hamiltonian systems and Fourier analysis, Cambridge Scientific Publisher, Cambridge (UK), 2005.

    Google Scholar 

  49. L.D. Landau and E. Teller, On the theory of sound dispersion, Phys. Z. Sowjet. 10, 34–41 (1936), also in Collected Papers of L.D. Landau, ter Haar, ed., Pergamon Press, Oxford 1965, pp. 147–153; G. Benettin, A. Carati and P. Sempio, On the Landau-Teller approximation for the energy exchanges with fast degrees of freedom, J. Stat. Phys. 73, 175 (1993); G. Benettin, A. Carati and G. Gallavotti, A rigorous implementation of the Landau-Teller approximation for adiabatic invariants, Nonlinearity 10, 479–505 (1997); G. Benettin, P. Hjorth and P. Sempio, Exponentially long equilibrium times in a one-dimensional collisional model of a classical gas, J. Stat. Phys. 94, 871–892 (1999); A. Carati, L. Galgani and B. Pozzi, The problem of the rate of thermalization, and the relations between classical and quantum mechanics, in M. Fabrizio, B Lazzari, A. Morro, eds, Mathematical models and methods for smart materials, World Scientific, Singapore, 2002.

    MATH  Google Scholar 

  50. G. Benettin, L. Galgani and A. Giorgilli, Exponential law for the equipartition times among translational and vibrational degrees of freedom, Phys. Lett. A 120, 23–27 (1987).

    Article  ADS  Google Scholar 

  51. O. Baldan and G. Benettin, Classical ‘freezing’ of fast rotations. A numerical test of the Boltzmann–Jeans conjecture, J. Stat. Phys. 62, 201 (1991).

    Article  ADS  Google Scholar 

  52. M. Pettini and M. Landolfi, Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics, Phys. Rev. A 41, 768–783 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Pettini, L. Casetti, M. Cerruti-Sola, R. Franzosi and E.G.D. Cohen, Weak and strong chaos in Fermi-Pasta-Ulam models and beyond, Chaos 15, 015106 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  54. L. Casetti, R. Livi and M. Pettini, Gaussian model for chaotic instability of Hamiltonian flows, Phys. Rev. Lett. 74, 375–378 (1995); L. Casetti, C. Clementi and Pettini, Riemannian theory of Hamiltonian chaos and Lyapunov exponents, Phys. Rev. E 54, 5969–5984 (1996); L. Casetti, M. Pettini and E.G.D. Cohen, Geometric approach to Hamiltonian dynamics and statistical mechanics, Phys. Rep. 337, 237–341 (2000).

    Article  ADS  Google Scholar 

  55. P. Butera and G. Caravati, Phase transitions and Lyapunov characteristic exponents, Phys. Rev. A 36, 962–964 (1987).

    Article  ADS  Google Scholar 

  56. M. Casartelli, E. Diana, L. Galgani and A. Scotti, Numerical computations on a stochastic parameter related to the Kolmogorov entropy, Phys. Rev. A 13, 1921–1925 (1976).

    Article  ADS  Google Scholar 

  57. G. Benettin, L. Galgani and A. Giorgilli, Classical Perturbation Theory for systems of weakly coupled rotators, Nuovo Cim. 89 B, 89–102 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  58. G. Benettin, L. Galgani and A. Giorgilli, Numerical investigations on a chain of weakly coupled rotators in the light of classical perturbation theory, Nuovo Cim. 89 B, 103–119 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Livi, M. Pettini, S. Ruffo and A. Vulpiani, Chaotic behavior in nonlinear Hamiltonian systems and equilibrium statistical mechanics, J. Stat. Phys. 48, 539–559 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. A. Perronace and A. Tenenbaum, Classical specific heat of an atomic lattice at low temperature, revisited, Phys. Rev. E 57, 100–107 (1998); Erratum, Phys. Rev. E 57, 6215 (1998).

    Article  ADS  Google Scholar 

  61. N.O. Birge and S.R. Nagel, Specific-heat spectroscopy of the glass transition, Phys. Rev. Lett. 54, 2674 (1985); N.O. Birge, Specific-heat spectroscopy of glycerol and propylene near the glass transition, Phys. Rev. 34, 1631–1642 (1986).

    Article  ADS  Google Scholar 

  62. J. Ford, Equipartition of energy for nonlinear systems, J. Math. Phys. 2, 387–393 (1961).

    Article  MATH  ADS  Google Scholar 

  63. L. Galgani, A. Giorgilli, A. Martinoli and S. Vanzini, On the problem of energy equipartition for large systems of the Fermi–Pasta–Ulam type: analytical and numerical estimates, Physica D 59, 334–348 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. G. Benettin, L. Galgani and A. Giorgilli, Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, II, Comm. Math. Phys. 121, 557–601 (1989); G. Benettin, J. Fröhlich and A. Giorgilli, A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom, Comm. Math. Phys, 119, 95–108 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. H. Kantz, Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems, Physica D 39, 322 (1989); H. Kantz, R. Livi and S. Ruffo, Equipartition thresholds in chains of anharmonic oscillators, J. Stat. Phys. 76, 627 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. J.A. Biello, P.R. Kramers, and Y. Lvov, Stages of energy transfer in the FPU model, Discr. Cont. Dyn. Syst. B (Suppl.) 113–122 (2003).

    Google Scholar 

  67. L. Berchialla, A. Giorgilli and S. Paleari, Exponentially long times to equipartition in the thermodynamic limit, Phys. Lett. A 321, 167–172 (2004).

    Article  MATH  ADS  Google Scholar 

  68. S. Paleari and T. Penati, Equipartition times in a FPU system, Discr. Cont. Dynam. Syst. (Suppl. Volume) 1–10 (2005).

    Google Scholar 

  69. A. Giorgilli, S. Paleari and T. Penati, Local chaotic behavior of the FPU system, Discr. Cont. Dynam. Syst. B 5, 1–14 (2005).

    MathSciNet  Google Scholar 

  70. J. De Luca, A. Lichtenberg and S. Ruffo, Finite times to equipartition in the thermodynamic limit, Phys. Rev. E 60, 3781–3786 (1999).

    Article  ADS  Google Scholar 

  71. A. Ponno, Soliton theory and the Fermi-Pasta-Ulam problem in the thermodynamic limit, Europh. Lett. 64, 606–612 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  72. A. Ponno, L. Galgani and F. Guerra, Analytical estimate of stochasticity thresholds in Fermi-Pasta-Ulam and phi-4 models, Phys. Rev. E 61, 7081–7086 (2000).

    Article  ADS  Google Scholar 

  73. A. Ponno and D. Bambusi, Energy cascade in FPU models, in G. Gaeta, et al. eds, Symmetry and perturbation theory 2004, World Scientific, Singapore, 2005, pp. 263–270.

    Chapter  Google Scholar 

  74. D. Bambusi and A. Ponno, Resonance, metastability and blow-up in FPU, Chap. 6 in this volume.

    Google Scholar 

  75. D. Bambusi, A. Carati and A. Ponno, The nonlinear Schroedinger equation as a resonant normal form, Discr. Cont. Dyn. Sys. B 2, 109–128 (2002).

    MATH  MathSciNet  Google Scholar 

  76. E. Olivieri and M.E. Vares, Large deviations and metastability, Cambridge U.P., Cambridge, 2005.

    Book  Google Scholar 

  77. H. Larralde and F. Leyvraz, Metastability for Markov processes with detailed balance, Phys. Rev. Lett. 94, 160201 (2005).

    Article  ADS  Google Scholar 

  78. A. Carati, Thermodynamics and time-averages, Physica A 348, 110–120 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benettin, G., Carati, A., Galgani, L., Giorgilli, A. (2007). The Fermi—Pasta—Ulam Problem and the Metastability Perspective. In: Gallavotti, G. (eds) The Fermi-Pasta-Ulam Problem. Lecture Notes in Physics, vol 728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72995-2_4

Download citation

Publish with us

Policies and ethics