Skip to main content

Can Single-Objective Optimization Profit from Multiobjective Optimization?

  • Chapter
Multiobjective Problem Solving from Nature

Part of the book series: Natural Computing Series ((NCS))

Summary

Many real-world problems are multiobjective optimization problems, and evolutionary algorithms are quite successful on such problems. Since the task is to compute or approximate the Pareto front, multiobjective optimization problems are considered as more difficult than single-objective problems. One should not forget that the fitness vector with respect to more than one objective contains more information that in principle can direct the search of evolutionary algorithms. Therefore, it is possible that a single-objective problem can be solved more efficiently via a generalized multiobjective model of the problem. That this is indeed the case is proved by investigating the single-source shortest paths problem and the computation of minimum spanning trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen, T., Leifhelm, M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S., and Wegener, I. (2004). Experimental supplements to the theoretical analysis of EAs on problems from combinatorial optimization. In Proc. of the 8th Int. Conf. on Parallel Problem Solving from Nature (PPSN VIII). LNCS 3242, 21–30.

    Google Scholar 

  2. Coello Coello, C. A., Van Veldhuizen, D. A., and Lamont, G. B. (2002). Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York.

    Book  Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algorithms. 2nd Edition, McGraw Hill, New York.

    MATH  Google Scholar 

  4. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester.

    MATH  Google Scholar 

  5. Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81.

    Article  MathSciNet  Google Scholar 

  6. Ehrgott, M. (2000). Approximation algorithms for combinatorial multicriteria optimization problems. Int. Transactions in Operational Research 7, 5–31.

    Article  MathSciNet  Google Scholar 

  7. Giel, O. (2003). Expected runtimes of a simple multi-objective evolutionary algorithm. In Proc. of the 2003 Congress of Evolutionary Computation (CEC), 1918–1925.

    Google Scholar 

  8. Giel, O. and Wegener, I. (2003). Evolutionary algorithms and the maximum matching problem. In Proc. of the 20th Ann. Symp. on Theoretical Aspects of Computer Science (STACS). LNCS 2607, 415–426.

    Google Scholar 

  9. Hamacher, H. W. and Ruhe, G. (1994). On spanning tree problems with multiple objectives. Annals of Operations Research 52, 209–230.

    Article  MathSciNet  Google Scholar 

  10. Jensen, M. T. (2004). Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation. Journal of Mathematical Modelling and Algorithms, 3(4), 323–347.

    Article  MathSciNet  Google Scholar 

  11. Knowles, J. D., Watson, R. A., and Corne, D. W. (2001). Reducing local optima in single-objective problems by multi-objectivization. In Proc. of Evolutionary Multi-Criterion Optimization (EMO 2001), LNCS 1993, 269–283.

    Google Scholar 

  12. Laumanns, M., Thiele, L., Zitzler, F., Welzl, E., and Deb, K. (2002). Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem. Proc. of the 7th Int. Conf. on Parallel Problems Solving from Nature (PPSN VII). LNCS 2439, 44–53.

    Google Scholar 

  13. Neumann, F. (2004). Expected run times of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. In Proc. of the 8th. Int. Conf. on Parallel Problem Solving from Nature (PPSN VIII). LNCS 3242, 80–89.

    Google Scholar 

  14. Neumann, F. and Wegener, I. (2004). Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. In Proc. of Genetic and Evolutionary Computation Conference (GECCO 2004). LNCS 3102, 713–724.

    Google Scholar 

  15. Raidl, G. R. and Julstrom, B. A. (2003). Edge sets: an effective evolutionary coding of spanning trees. IEEE Trans. on Evolutionary Computation 7, 225–239.

    Article  Google Scholar 

  16. Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness landscapes based on sorting and shortest paths problems. Proc. of the 7th Conf. on Parallel Problem Solving from Nature (PPSN VII). LNCS 2439, 54–63.

    Google Scholar 

  17. Zhou, G. and Gen, M. (1999). Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research 114, 141–152.

    Article  Google Scholar 

  18. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C. M., and Grunert da Fonseca, V. (2003). Performance assessment of multi-objective optimizers: An analysis and review. IEEE Trans. on Evolutionary Computation 7, 117–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neumann, F., Wegener, I. (2008). Can Single-Objective Optimization Profit from Multiobjective Optimization?. In: Knowles, J., Corne, D., Deb, K. (eds) Multiobjective Problem Solving from Nature. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72964-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72964-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72963-1

  • Online ISBN: 978-3-540-72964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics