Skip to main content

Simulation of 3D Ultrasound with a Realistic Electro-mechanical Model of the Heart

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

This paper presents a first set of experiments to integrate a realistic electro-mechanical model of a beating heart into simulated real-time three-dimensional (RT3D) ultrasound data. A novel ultrasound simulation framework is presented, extended from the model of Meunier [12]. True three-dimensional transducer modeling was performed, using RT3D acquisition design. Myocardium and blood scattering parameters were defined in three dimensions. Ultrasound data sets were generated for a normal case and a pathological case, simulating left bundle branch block. Accuracy of an optical flow tracking method was evaluated on the simulated data to measure displacements on the myocardial surfaces and inside the myocardium over a cardiac cycle. The proposed simulation framework has important motivations in a cardiac modeling context as part of this project is focused on the design of effective parameter estimation methods, based on cardiac imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelini, E., Homma, S., Pearson, G., Holmes, J., Laine, A.: Segmentation of real-time three-dimensional ultrasound for quantification of ventricular function: a clinical study on right and left ventricles. Ultrasound in Medicine and Biology 31(9), 1143–1158 (2005)

    Article  Google Scholar 

  2. Angelini, E., Laine, A., Takuma, S., Holmes, J., Homma, S.: LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography. IEEE Transactions on Medical Imaging 20(6), 457–469 (2001)

    Article  Google Scholar 

  3. Bamber, J.C., Dickinson, R.J.: Ultrasonic b-scanning: a computer simulation. Physics in Medicne and Biology 25, 463–479 (1980)

    Article  Google Scholar 

  4. Bresenham, V.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)

    Article  Google Scholar 

  5. Clifford, L., Fitzgerald, P., James, D.: Non-rayleigh first-order statistics of ultrasonic backscatter from normal myocardium. Ultrasound in Medicine and Biology 19(6), 487–495 (1993)

    Article  Google Scholar 

  6. Duan, Q., Angelini, E., Gerard, O., Homma, S., Laine, A.: Comparing optical-flow based methods for quantification of myocardial deformations on rt3d ultrasound. In: IEEE International Symposium on Biomedical Imaging, Arlington, VA, USA, pp. 173–176. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  7. Duan, Q., Angelini, E.D., Herz, S.L., Ingrassia, C.M., Gerard, O., Costa, K.D., Holmes, J.W., Laine, A.F.: Dynamic cardiac information from optical flow using four dimensional ultrasound. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 4465–4468. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  8. Duan, Q., Angelini, E.D., Herz, S.L., Ingrassia, C.M., Gerard, O., Costa, K.D., Holmes, J.W., Laine, A.F.: Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data. In: SPIE International Symposium, Medical Imaging San Diego, CA, USA (2005)

    Google Scholar 

  9. Jensen, J.A.: Field: A program for simulating ultrasound systems. Medical & Biological Engineering & Computing 34(1.1), 351–353 (1996)

    Google Scholar 

  10. Kallel, F., Bertrand, M., Meunier, J.: Speckle motion artifact under tissue rotation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Controls 41, 105–122 (1994)

    Article  Google Scholar 

  11. Meunier, J.: Tissue motion assessment from 3d echographic speckle tracking. Physics in Medicine and Biology 43, 1241–1254 (1998)

    Article  Google Scholar 

  12. Meunier, J., Bertrand, M.: Echographic image mean gray level changes with tissue dynamics: A system-based model study. IEEE Transactions on Biomedical Engineering 42(4), 403–410 (1995)

    Article  Google Scholar 

  13. Meunier, J., Bertrand, M.: Ultrasonic texture motion analysis: theory and simulation. IEEE Transactions on Medical Imaging 14(2), 293–300 (1995)

    Article  Google Scholar 

  14. Narayanan, V.M., Shankar, P.M., Reid, J.M.: Non-rayleigh statistics of ultrasonic backscattered signals. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 41(6), 845–852 (1994)

    Article  Google Scholar 

  15. Neu, J.C., Krassowska, W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21, 137–199 (1993)

    Google Scholar 

  16. Papademetris, X., Sinusas, A.J., Dione, D.P., Duncan, J.S.: Estimation of 3D left ventricular deformation from echocardiography. Medical Image Analysis 8, 285–294 (2004)

    Article  Google Scholar 

  17. Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Computers and Structures 84, 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  18. Sarti, A., Bassi, P., Lamberti, C.: 3D modeling of phased array generated ultrasounds in lossy media. Computerized Medical Imaging and Graphics 17(4–5), 339–343 (1994)

    Google Scholar 

  19. Seggie, D.A., Leeman, S., Burge, R.E.: Realistic simulation of b-scan images. In: IEEE Ultrasonics Symposium, pp. 714–717. IEEE Computer Society Press, Los Alamitos (1983)

    Google Scholar 

  20. Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4d cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)

    Article  Google Scholar 

  21. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L., Chapelle, D., Razavi, R.: Cardiac function estimation from mri using a heart model and data assimilation: Advances and difficulties. Medical Image Analysis 10(4), 642–656 (2006)

    Article  Google Scholar 

  22. Smith, S.W., Pavy, H.G., Von Ramm, O.T.: High speed ultrasound volumetric imaging system-part I: Transducer design and beam steering. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38(2), 100–108 (1991)

    Article  Google Scholar 

  23. Smith, S.W., Ramm, O.T.V.: Real time volumetric ultrasound imaging system. Journal of Digital Imaging 3, 261–266 (1990)

    Article  Google Scholar 

  24. Suhling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M.: Myocardial motion analysis from b-mode echocardiograms. IEEE Transactions on Image Processing 14, 525–553 (2005)

    Article  Google Scholar 

  25. Tuthill, T.A., Sperry, R.H., Parker, K.J.: Deviations from rayleigh statistics in ultrasonic speckle. Ultrasonic Imaging 10(2), 81–89 (1988)

    Article  Google Scholar 

  26. Von Ramm, O., Smith, S., Pavy, H.G.: High-speed ultrasound volumetric imaging system part II: parallel processing and image display. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38(2), 109–115 (1991)

    Article  Google Scholar 

  27. Wagner, R.F., Insana, M.F., Brown, D.G.: Statistical properties of radiofrequency and envelope-detected signals with applications to medical ultrasound. Journal of the Optical Society of America 4, 910–922 (1987)

    Article  Google Scholar 

  28. Yen, J.T., Smith, S.W.: Real-time rectilinear volumetric imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 49(1), 114–124 (2006)

    Article  Google Scholar 

  29. Yen, J.T., Steinberg, J.P., Smith, S.W.: Sparse 2D array design for real-time rectilinear volumetric imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47(1), 93–110 (2000)

    Article  Google Scholar 

  30. Yu, W., Yan, P., Sinusas, A.J., Thiele, K., Duncan, J.S.: Towards pointwise motion tracking in echocardiographic image sequences: Comparing the reliability of different features for speckle tracking. Medical Image Analysis 10, 495–508 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Duan, Q., Moireau, P., Angelini, E.D., Chapelle, D., Laine, A.F. (2007). Simulation of 3D Ultrasound with a Realistic Electro-mechanical Model of the Heart. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics