Skip to main content

Direct AKAP-Mediated Protein-Protein Interactions as Potential Drug Targets

  • Chapter
Protein-Protein Interactions as New Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AKAP:

A-kinase-anchoring protein

AVP:

arginine-vasopressin

GEF:

guanine nucleotide exchange factor

PKA:

protein kinase A

SR:

sarcoplasmic reticulum

PDE:

phosphodiesterase

cAMP:

cyclic adenosine monophosphate

PLN:

phospholamban

RyR2:

ryanodinereceptorstype2

PP2B:

protein phosphatase 2B/ calcineurin

References

  • Alto NM, Soderling J, Scott JD (2002) Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158:659–668

    Article  PubMed  CAS  Google Scholar 

  • Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD (2003) Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring. Proc Natl Acad Sci USA 100:4445–4450

    Article  PubMed  CAS  Google Scholar 

  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D (2007) The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 104:10140–10145

    Article  PubMed  CAS  Google Scholar 

  • Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  PubMed  CAS  Google Scholar 

  • Baillie GS, Adams DR, Bhari N, Houslay TM, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger GB, Klussmann E, Houslay MD (2007) Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Biochem J 404:71–80

    Article  PubMed  CAS  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    Article  PubMed  CAS  Google Scholar 

  • Beene DL, Scott JD (2007) A-kinase anchoring proteins take shape. Curr Opin Cell Biol 19:192–198

    Article  PubMed  CAS  Google Scholar 

  • Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, Adams DR, Houslay MD (2006) Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 398:23–36

    Article  PubMed  CAS  Google Scholar 

  • Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG (2006) Microvilli defects in retinas of ezrin knockout mice. Exp Eye Res 82:720–729

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  • Bristow MR (1993) Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 22:61A–71A

    Article  PubMed  CAS  Google Scholar 

  • Burns-Hamuro LL, Ma Y, Kammerer S, Reineke U, Self C, Cook C, Olson GL, Cantor CR, Braun A, Taylor SS (2003) Designing isoform-specific peptide disruptors of protein kinase A localization. Proc Natl Acad Sci USA 100:4072–4077

    Article  PubMed  CAS  Google Scholar 

  • Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, Tasken K, Scott JD (2006) Delineation of type I protein kinase a selective signaling events using an ri anchoring disruptor (RIAD). J Biol Chem 281:21535–21545

    Article  PubMed  CAS  Google Scholar 

  • Carnegie GK, Smith FD, McConnachie G, Langeberg LK, Scott JD (2004) AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell 15:889–899

    Article  PubMed  CAS  Google Scholar 

  • Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266:14188–14192

    PubMed  CAS  Google Scholar 

  • Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267:13376–13382

    PubMed  CAS  Google Scholar 

  • Chen HH, Schrier RW (2006) Pathophysiology of volume overload in acute heart failure syndromes. Am J Med 119:S11–S16

    Article  PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    Article  PubMed  CAS  Google Scholar 

  • Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276:44247–44257

    Article  PubMed  CAS  Google Scholar 

  • Diviani D, Abuin L, Cotecchia S, Pansier L (2004) Anchoring of both PKA and 14-3-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex. EMBO J 23:2811–2820

    Article  PubMed  CAS  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20:1921–1930

    Article  PubMed  CAS  Google Scholar 

  • Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR (1997) Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J 16:35–43

    Article  PubMed  CAS  Google Scholar 

  • Dudkina AS, Lindsley CW (2007) Small molecule protein–protein inhibitors for the p53-MDM2 interaction. Curr Top Med Chem 7:952–960

    Article  PubMed  CAS  Google Scholar 

  • Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S, Lasher R, Trujillo J, Rowley J, Drabkin H (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80:1825–1831

    PubMed  CAS  Google Scholar 

  • Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron DS, Bond M (2001) AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 88:291–297

    PubMed  CAS  Google Scholar 

  • Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports – principles and applications. J Immunol Methods 267:13–26

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T (2001a) MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene 20:6225–6232

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama T, Sueoka E, Sugio Y, Otsuka T, Niho Y, Akagi K, Kozu T (2001b) MTG8 proto-oncoprotein interacts with the regulatory subunit of type II cyclic AMP-dependent protein kinase in lymphocytes. Oncogene 20:6225–6232

    Article  PubMed  CAS  Google Scholar 

  • Gao T, Yatani A, Dell’Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM (1997) cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19:185–196

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101:7618–7623

    Article  PubMed  CAS  Google Scholar 

  • Gold MG, Lygren B, Dokurno P, Hoshi N, McConnachie G, Tasken K, Carlson CR, Scott JD, Barford D (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24:383–395

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Billault C, Engelke M, Jimenez-Mateos EM, Wandosell F, Caceres A, Avila J (2002) Participation of structural microtubule-associated proteins (MAPs) in the development of neuronal polarity. J Neurosci Res 67:713–719

    Article  PubMed  CAS  Google Scholar 

  • Hall DD, Davare MA, Shi M, Allen ML, Weisenhaus M, McKnight GS, Hell JW (2007) Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Ca(v) 1.2 via A-kinase anchor protein 150 in neurons. Biochemistry 46:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N (2002) MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 158:541–549

    Article  PubMed  CAS  Google Scholar 

  • Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause E, Herberg FW, Valenti G, Bachmann S, Rosenthal W, Klussmann E (2004) Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem 279:26654–26665

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Ast T, Polakowski T, Reineke U, Volkmer R (2006) Transformation of a biologically active peptide into peptoid analogs while retaining biological activity. Protein Pept Lett 13:829–833

    Article  PubMed  CAS  Google Scholar 

  • Hoshi N, Scott JD (2006) Contextual utilization of enzymes in discrete AKAP79/150 signalling complexes. Eur J Cell Biol 85:621–622

    Article  PubMed  CAS  Google Scholar 

  • Hoshi N, Langeberg LK, Scott JD (2005) Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol 7:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Schafer P, Zhang KY (2005) Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discov Today 10:1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Somanath PR, Chakrabarti R, Eddy EM, Vijayaraghavan S (2005) Changes in intracellular distribution and activity of protein phosphatase PP1gamma2 and its regulating proteins in spermatozoa lacking AKAP4. Biol Reprod 72:384–392

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Ahn M, Hauschka SD, Scheuer T, Catterall WA (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 277:4079–4087

    Article  PubMed  CAS  Google Scholar 

  • Hulme JT, Lin TW, Westenbroek RE, Scheuer T, Catterall WA (2003) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA 100:13093–13098

    Article  PubMed  CAS  Google Scholar 

  • Hundsrucker C, Krause G, Beyermann M, Prinz A, Zimmermann B, Diekmann O, Lorenz D, Stefan E, Nedvetsky P, Dathe M, Christian F, McSorley T, Krause E, McConnachie G, Herberg FW, Scott JD, Rosenthal W, Klussmann E (2006) High-affinity AKAP7delta-protein kinase A interaction yields novel protein kinase A-anchoring disruptor peptides. Biochem J 396:297–306

    Article  PubMed  CAS  Google Scholar 

  • Kan CE, Patton JT, Stark GR, Jackson MW (2007) p53-mediated growth suppression in response to nutlin-3 in cyclin D1 transformed cells occurs independently of p21. Cancer Res 67:9862–9868

    Article  PubMed  CAS  Google Scholar 

  • Kapiloff MS, Schillace RV, Westphal AM, Scott JD (1999) mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J Cell Sci 112(Pt 16): 2725–2736

    PubMed  CAS  Google Scholar 

  • Kim C, Cheng CY, Saldanha SA, Taylor SS (2007) PKA-I holoenzyme structure reveals a mechanism for cAMP-dependent activation. Cell 130:1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong NH, Jennings PA, Taylor SS (2006) A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 24:397–408

    Article  PubMed  CAS  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W (1999) Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 274:4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Klussmann E, Maric K, Rosenthal W (2000) The mechanisms of aquaporin control in the renal collecting duct. Rev Physiol Biochem Pharmacol 141:33–95

    Article  PubMed  CAS  Google Scholar 

  • Kofler M, Motzny K, Freund C (2005) GYF domain proteomics reveals interaction sites in known and novel target proteins. Mol Cell Proteomics 4:1797–1811

    Article  PubMed  CAS  Google Scholar 

  • Kramer A, Schneider-Mergener J (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports. Methods Mol Biol 87:25–39

    PubMed  CAS  Google Scholar 

  • Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Tasken K, Klussmann E (2007) AKAP complex regulates Ca(2+) re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase A/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280:33178–33189

    Article  PubMed  CAS  Google Scholar 

  • Lynch MJ, Hill EV, Houslay MD (2006) Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 75:225–259

    Article  PubMed  CAS  Google Scholar 

  • Malbon CC, Tao J, Shumay E, Wang HY (2004a) AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling. Biochem Soc Trans 32:861–864

    Article  PubMed  CAS  Google Scholar 

  • Malbon CC, Tao J, Wang HY (2004b) AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 379:1–9

    Article  PubMed  CAS  Google Scholar 

  • Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991) t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88:10431–10434

    Article  PubMed  CAS  Google Scholar 

  • Moita MA, Lamprecht R, Nader K, LeDoux JE (2002) A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nat Neurosci 5:837–838

    Article  PubMed  CAS  Google Scholar 

  • Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95:67–75

    Article  PubMed  CAS  Google Scholar 

  • Newhall KJ, Criniti AR, Cheah CS, Smith KC, Kafer KE, Burkart AD, McKnight GS (2006) Dynamic anchoring of PKA is essential during oocyte maturation. Curr Biol 16:321–327

    Article  PubMed  CAS  Google Scholar 

  • Newlon MG, Roy M, Morikis D, Hausken ZE, Coghlan V, Scott JD, Jennings PA (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 6:222–227

    Article  PubMed  CAS  Google Scholar 

  • Nie T, McDonough CB, Huang T, Nguyen PV, Abel T (2007) Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27:10278–10288

    Article  PubMed  CAS  Google Scholar 

  • Nisson PE, Watkins PC, Sacchi N (1992) Transcriptionally active chimeric gene derived from the fusion of the AML1 gene and a novel gene on chromosome 8 in t(8;21) leukemic cells. Cancer Genet Cytogenet 63:81–88

    Article  PubMed  CAS  Google Scholar 

  • Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of calcineurin controls neuronal L-type Ca2+ channel activity and nuclear signaling. Neuron 55:261–275

    Article  PubMed  CAS  Google Scholar 

  • Pare GC, Bauman AL, McHenry M, Michel JJ, Dodge-Kafka KL, Kapiloff MS (2005) The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci 118:5637–5646

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Fan S, Li X, Wang L, Liu H, Zhou M, Wang L, Shen S, Li G (2007) The expression of ezrin in NPC and its interaction with NGX6, a novel candidate suppressor. Cancer Sci 98:341–349

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschner MW, Rosen MK (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11:747–755

    Article  PubMed  CAS  Google Scholar 

  • Ralston KS, Lerner AG, Diener DR, Hill KL (2006) Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system. Eukaryot Cell 5:696–711

    Article  PubMed  CAS  Google Scholar 

  • Sachs BD, Baillie GS, McCall JR, Passino MA, Schachtrup C, Wallace DA, Dunlop AJ, MacKenzie KF, Klussmann E, Lynch MJ, Sikorski SL, Nuriel T, Tsigelny I, Zhang J, Houslay MD, Chao MV, Akassoglou K (2007) p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway. J Cell Biol 177:1119–1132

    Article  PubMed  CAS  Google Scholar 

  • Schrier RW, Cadnapaphornchai MA (2003) Renal aquaporin water channels: from molecules to human disease. Prog Biophys Mol Biol 81:117–131

    Article  PubMed  CAS  Google Scholar 

  • Schwaerzel M, Jaeckel A, Mueller U (2007) Signaling at A-kinase anchoring proteins organizes anesthesia-sensitive memory in Drosophila. J Neurosci 27:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Shin DS, Kim DH, Chung WJ, Lee YS (2005) Combinatorial solid phase peptide synthesis and bioassays. J Biochem Mol Biol 38:517–525

    PubMed  CAS  Google Scholar 

  • Smith KJ, Baillie GS, Hyde EI, Li X, Houslay TM, McCahill A, Dunlop AJ, Bolger GB, Klussmann E, Adams DR, Houslay MD (2007) (1) H NMR structural and functional characterisation of a cAMP-specific phosphodiesterase-4D5 (PDE4D5) N-terminal region peptide that disrupts PDE4D5 interaction with the signalling scaffold proteins, betaarrestin and RACK1. Cell Signal 19:2612–2624

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Binns KL, Wayman GA, Davee SM, Ong SH, Pawson T, Scott JD (2002) The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nat Cell Biol 4:970–975

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Langeberg LK, Soderling JA, Davee SM, Simerly R, Raber J, Scott JD (2003) Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc Natl Acad Sci USA 100:1723–1728

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27:355–365

    Article  PubMed  CAS  Google Scholar 

  • Stefan E, Wiesner B, Baillie GS, Mollajew R, Henn V, Lorenz D, Furkert J, Santamaria K, Nedvetsky P, Hundsrucker C, Beyermann M, Krause E, Pohl P, Gall I, MacIntyre AN, Bachmann S, Houslay MD, Rosenthal W, Klussmann E (2007) Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells. J Am Soc Nephrol 18:199–212

    Article  PubMed  CAS  Google Scholar 

  • Szaszák M, Christian F, Rosenthal W, Klussmann E (2008) Compartmentalized cAMP signalling in regulated exocytic processes in non-neuronal cells. Cell Signal 20:590–601

    Article  PubMed  CAS  Google Scholar 

  • Tamura A, Kikuchi S, Hata M, Katsuno T, Matsui T, Hayashi H, Suzuki Y, Noda T, Tsukita S, Tsukita S (2005) Achlorhydria by ezrin knockdown: defects in the formation/expansion of apical canaliculi in gastric parietal cells. J Cell Biol 169:21–28

    Article  PubMed  CAS  Google Scholar 

  • Tasken K, Aandahl EM (2004) Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 84:137–167

    Article  PubMed  CAS  Google Scholar 

  • Tasken KA, Collas P, Kemmner WA, Witczak O, Conti M, Tasken K (2001) Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem 276:21999–22002

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155:65–76

    Article  PubMed  CAS  Google Scholar 

  • Tingley WG, Pawlikowska L, Zaroff JG, Kim T, Nguyen T, Young SG, Vranizan K, Kwok PY, Whooley MA, Conklin BR (2007) Gene-trapped mouse embryonic stem cell-derived cardiac myocytes and human genetics implicate AKAP10 in heart rhythm regulation. Proc Natl Acad Sci USA 104:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • Toogood PL (2002) Inhibition of protein–protein association by small molecules: approaches and progress. J Med Chem 45:1543–1558

    Article  PubMed  CAS  Google Scholar 

  • Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233

    Article  PubMed  CAS  Google Scholar 

  • Ungerer M, Parruti G, Bohm M, Puzicha M, DeBlasi A, Erdmann E, Lohse MJ (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213

    PubMed  CAS  Google Scholar 

  • Valenti G, Procino G, Tamma G, Carmosino M, Svelto M (2005) Minireview: aquaporin 2 trafficking. Endocrinology 146:5063–5070

    Article  PubMed  CAS  Google Scholar 

  • Vives E (2005) Present and future of cell-penetrating peptide mediated delivery systems: “Is the Trojan horse too wild to go only to Troy?” J Control Release 109:77–85

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Wong W, Schaack J, Scott JD, Cooper DM (2006) An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J 25:2051–2061

    Article  PubMed  CAS  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Brown SH, von Daake S, Taylor SS (2007) PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity. Science 318:274–279

    Article  PubMed  CAS  Google Scholar 

  • Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M, Marin-Padilla M, Tenen DG, Speck NA, Zhang DE (1997) Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 15:303–306

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed Engl 44:4130–4163

    Article  PubMed  CAS  Google Scholar 

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295:1711–1715

    Article  PubMed  CAS  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hundsrucker, C., Klussmann, E. (2008). Direct AKAP-Mediated Protein-Protein Interactions as Potential Drug Targets. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_20

Download citation

Publish with us

Policies and ethics