Skip to main content

Mumford-Shah Regularizer with Spatial Coherence

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

As recently discussed by Bar, Kiryati, and Sochen in [3], the Ambrosio-Tortorelli approximation of the Mumford-Shah functional defines an extended line process regularization where the regularizer has an additional constraint introduced by the term \(\rho|\nabla v|^2\). This term mildly forces some spatial organization by demanding that the edges are smooth. However, it does not force spatial coherence such as edge direction compatibility or edge connectivity, as in the traditional edge detectors such as Canny. Using the connection between regularization and diffusion filters, we incorporate further spatial structure into the regularization process of the Mumford-Shah model. The new model combines smoothing, edge detection and edge linking steps of the traditional approach to boundary detection. Importance of spatial coherence is best observed if the image noise is salt and pepper like. Proposed approach is able to deal with difficult noise cases without using non-smooth cost functions such as L 1 in the data fidelity or regularizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alicandro, R., Braides, A., Shah, J.: Free-discontinuity problems via functionals involving the L 1-norm of the gradient and their approximation. Interfaces and Free Boundaries 1(1), 17–37 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.: On the approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar, L., Kiryati, N., Sochen, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vision 70(3), 279–298 (2006)

    Article  Google Scholar 

  4. Sochen, N.A., Kiryati, N., Bar, L.: Image Deblurring in the Presence of Salt-and-Pepper Noise. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 107–118. Springer, Heidelberg (2005)

    Google Scholar 

  5. Black, M.J., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vision 19(1), 57–91 (1996)

    Article  Google Scholar 

  6. Black, M.J., et al.: Robust anisotropic diffusion. IEEE Trans. Image Processing 7(3), 421–432 (1998)

    Article  Google Scholar 

  7. Braides, A.: Approximation of Free-discontinuity Problems. Lecture Notes in Mathematics, vol. 1694. Springer, Heidelberg (1998)

    Google Scholar 

  8. Weickert, J., et al.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Google Scholar 

  9. Burgeth, B., Weickert, J., Tari, S.: Minimally stochastic schemes for singular diffusion equations. In: Tai, X.-C., et al. (eds.) Image Processing Based on Partial Differential Equations. Mathematics and Visualization, pp. 325–339. Springer, Heidelberg (2006)

    Google Scholar 

  10. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  11. Chan, T., Vese, L.: Variational image restoration and segmentation models and approximations. UCLA, CAM-report 97-47 (September 1997)

    Google Scholar 

  12. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–739 (1984)

    MATH  Google Scholar 

  13. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1-2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  15. Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12(1), 43–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shah, J.: Segmentation by nonlinear diffusion. In: CVPR, pp. 202–207 (1991)

    Google Scholar 

  17. Shah, J.: A common framework for curve evolution, segmentation and anisotropic diffusion. In: CVPR, pp. 136–142 (1996)

    Google Scholar 

  18. Teboul, S., et al.: Variational approach for edge preserving regularization using coupled pde’s. IEEE Trans. Image Processing 7(3), 387–397 (1998)

    Article  Google Scholar 

  19. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vision 31(2-3), 111–127 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Erdem, E., Sancar-Yilmaz, A., Tari, S. (2007). Mumford-Shah Regularizer with Spatial Coherence. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics