Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4501))

Abstract

In this paper we introduce MiniMaxSat, a new Max-SAT solver that incorporates the best SAT and Max-SAT techniques. It can handle hard clauses (clauses of mandatory satisfaction as in SAT), soft clauses (clauses whose falsification is penalized by a cost as in Max-SAT) as well as pseudo-boolean objective functions and constraints. Its main features are: learning and backjumping on hard clauses; resolution-based and subtraction-based lower bounding; and lazy propagation with the two-watched literals scheme. Our empirical evaluation on a wide set of optimization benchmarks indicates that its performance is usually close to the best specialized alternative and, in some cases, even better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  2. Karloff, H.J., Zwick, U.: A 7/8-Approximation Algorithm for MAX 3SAT. In: FOCS (1997)

    Google Scholar 

  3. Shen, H., Zhang, H.: Study of lower bounds for Max-2-SAT. In: AAAI (2004)

    Google Scholar 

  4. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency for weighted CSPs. In: IJCAI (2005)

    Google Scholar 

  5. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving (2006), Available at the Computing Research Repository http://arxiv.org/PS_cache/cs/ps/0611/0611025.ps.gz

  6. Xing, Z., Zhang, W.: MaxSolver: An efficient exact algorithm for (weighted) maximum satisfiability. Artificial Intelligence 164, 47–80 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Manyà, F., Li, C.-M., Planes, J.: Exploiting Unit Propagation to Compute Lower Bounds in Branch and Bound Max-SAT Solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005)

    Google Scholar 

  8. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing lower bounds for max-sat. In: AAAI (2006)

    Google Scholar 

  9. Cha, B., et al.: Local search algorithms for partial MAXSAT. In: AAAI/IAAI, pp. 263–268 (1997)

    Google Scholar 

  10. Manyà, F., Alsinet, T., Planès, J.G.: Improved Exact Solvers for Weighted Max-SAT. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer, Heidelberg (2005)

    Google Scholar 

  11. Argelich, J., Manyà, F.: Learning hard constraints in max-sat. In: CSCLP-2006, pp. 1–12 (2006)

    Google Scholar 

  12. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  13. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Google Scholar 

  14. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI (2006)

    Google Scholar 

  15. Moskewicz, M.W., et al.: Chaff: Engineering an efficient sat solver. In: DAC, pp. 530–535 (2001)

    Google Scholar 

  16. Hoos, H.H., Tompkins, D.A.D.: UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

    Google Scholar 

  17. Larrosa, J.: Node and arc consistency in weighted CSP. In: AAAI, pp. 48–53 (2002)

    Google Scholar 

  18. Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfiability. In: ICTAI, p. 105 (2003)

    Google Scholar 

  19. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean sat solver. Journal on Satisfiability, Boolean Modeling and Computation 2, 165–189 (2006)

    MATH  Google Scholar 

  20. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Submitted (2006)

    Google Scholar 

  21. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted CSP. In: Proc. of the 18th IJCAI, Acapulco, Mexico (2003)

    Google Scholar 

  22. de Givry, S., et al.: Solving max-SAT as weighted CSP. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Google Scholar 

  23. de Givry, S., et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, U.K. (2005)

    Google Scholar 

  24. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial auction algorithms. In: ACM E-Commerce, pp. 66–76 (2000)

    Google Scholar 

  25. Cooper, M., et al.: Soft Arc Consistency Applied to Optimal Planning. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 680–684. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Lynce, I., Silva, J.P.M.: Efficient data structures for backtrack search sat solvers. Ann. Math. Artif. Intell. 43, 137–152 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Zivan, R., Meisels, A.: Conflict directed backjumping for maxcsps. In: IJCAI (2007)

    Google Scholar 

  29. Manquinho, V.M., Silva, J.P.M.: Satisfiability-based algorithms for boolean optimization. Ann. Math. Artif. Intell. 40, 353–372 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

João Marques-Silva Karem A. Sakallah

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Heras, F., Larrosa, J., Oliveras, A. (2007). MiniMaxSat: A New Weighted Max-SAT Solver. In: Marques-Silva, J., Sakallah, K.A. (eds) Theory and Applications of Satisfiability Testing – SAT 2007. SAT 2007. Lecture Notes in Computer Science, vol 4501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72788-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72788-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72787-3

  • Online ISBN: 978-3-540-72788-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics