Skip to main content

Bacterial Sulfite-Oxidizing Enzymes – Enzymes for Chemolithotrophs Only?

  • Conference paper
Microbial Sulfur Metabolism

All known sulfite-oxidizing enzymes that have been studied in molecular detail belong to the sulfite oxidase family of molybdoenzymes. The first bacterial enzymes in this family were only characterized in 2000, but by now it has become clear that bacterial enzymes originating from many different types of bacteria may actually be the most abundant proteins in this enzyme family. This chapter provides an overview of sulfite oxidase like bacterial enzymes as well as an analysis of their phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aminuddin M, Nicholas DJD (1974) An AMP-independent sulphite oxidase from Thiobacillus denitrificans: purification and properties. J Gen Microbiol 82:103–113.

    Google Scholar 

  • Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC (2001) Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J Bacteriol 183:6107–6118.

    Article  CAS  PubMed  Google Scholar 

  • Bardischewsky F, Quentmeier A, Rother D, Hellwig P, Kostka S, Friedrich CG (2005) Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry 44:7024–7034.

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Brokx SJ, Rothery RA, Zhang GJ, Ng DP, Weiner JH (2005) Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44:10339–10348.

    Article  CAS  PubMed  Google Scholar 

  • Carroll KS, Gao H, Chen HY, Stout CD, Leary JA, Bertozzi CR (2005) A conserved mechanism for sulfonucleotide reduction. PLoS Biol 3:1418–1435.

    CAS  Google Scholar 

  • Chamulitrat W (1999) Activation of the superoxide-generating NADPH oxidase of intestinal lymphocytes produces highly reactive free radicals from sulfite. Free Radic Biol Med 27:411–421.

    Article  CAS  PubMed  Google Scholar 

  • Cook A, Denger K, Smits T (2006) Dissimilation of C3-sulfonates. Arch Microbiol 185:83–90.

    Article  CAS  PubMed  Google Scholar 

  • deJong GAH, Tang JA, Bos P, de Vries S, Kuenen GJ (2000) Purification and characterization of a sulfite:cytochrome c oxidoreductase from Thiobacillus acidophilus. J Mol Catal B 8:61–67.

    Article  Google Scholar 

  • Denger K, Smits THM, Cook AM (2006) L-Cysteate sulpho-lyase, a widespread pyridoxal 5-phosphate-coupled desulphonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem J 394:657–664.

    Article  CAS  PubMed  Google Scholar 

  • D’Errico G, Di Salle A, La Cara F, Rossi M, Cannio R (2006) Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. J Bacteriol 188:694–701.

    Article  PubMed  CAS  Google Scholar 

  • Domenech P, Reed MB, Barry CE (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501.

    Article  CAS  PubMed  Google Scholar 

  • Doonan CJ, Kappler U, George GN (2006) Structure of the active site of sulfite dehydrogenase from Starkeya novella. Inorg Chem 45:7488–7492.

    Article  CAS  PubMed  Google Scholar 

  • Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Haensch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase–a new player in plant sulfur metabolism. J Biol Chem 276:46989–46994.

    Article  CAS  PubMed  Google Scholar 

  • Enemark JH, Cosper MM (2002) Molybdenum enzymes and sulfur metabolism. Met Ions Biol Syst 39:621–654.

    CAS  PubMed  Google Scholar 

  • Enemark JH, Astashkin AV, Raitsimring AM (2006) Investigation of the coordination structures of the molybdenum(V) sites of sulfite oxidizing enzymes by pulsed EPR spectroscopy. Dalton Trans 3501–3514.

    Google Scholar 

  • Fischer K, Barbier GG, Hecht HJ, Mendel RR, Campbell WH, Schwarz G (2005) Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17:1167–1179.

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259.

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1987) Mammalian sulfur amino acids metabolism: an overview. Methods Enzymol 143:366–376.

    Article  CAS  PubMed  Google Scholar 

  • Hayes MK, Taylor GT, Astor Y, Scranton MI (2006) Vertical distributions of thiosulfate and sulfite in the Cariaco Basin. Limnol Oceanogr 51:280–287.

    Article  CAS  Google Scholar 

  • Hemann C, Hood BL, Fulton M, Hansch R, Schwarz G, Mendel RR, Kirk ML.

    Google Scholar 

  • Hille R (2005) Spectroscopic and kinetic studies of Arabidopsis thaliana sulfite oxidase: nature of the redox-active orbital and electronic structure contributions to catalysis. J Am Chem Soc 127:16567–16577.

    Article  PubMed  CAS  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816.

    Article  CAS  PubMed  Google Scholar 

  • Hille R (2005) Molybdenum-containing hydroxylases. Arch Biochem Biophys 433:107–116.

    Article  CAS  PubMed  Google Scholar 

  • Kappler U, Bailey S (2005) Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280:24999–25007.

    Article  CAS  PubMed  Google Scholar 

  • Kappler U, Dahl C (2001) Enzymology and molecular biology of prokaryotic sulfite oxidation. FEMS Microbiol Lett 203:1–9.

    CAS  PubMed  Google Scholar 

  • Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000) Sulfite: cytochrome c oxidoreductase from Thiobacillus novellus–purification, characterization and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212.

    Article  CAS  PubMed  Google Scholar 

  • Kappler U, Friedrich CG, Trüper HG, Dahl C (2001) Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Arch Microbiol 175:102–111.

    Article  CAS  PubMed  Google Scholar 

  • Kappler U, Bailey S, Feng CJ, Honeychurch MJ, Hanson GR, Bernhardt PV, Tollin G, Enemark JH (2006) Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo active site in a bacterial sulfite dehydrogenase. Biochemistry 45:9696–9705.

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107.

    Article  CAS  PubMed  Google Scholar 

  • Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997a) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983.

    Article  CAS  PubMed  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997b) Molybdenum-cofactor-containing enzymes: Structure and mechanism. Annu Rev Biochem 66:233–267.

    Article  CAS  PubMed  Google Scholar 

  • Lester MR (1995) Sulfite sensitivity–significance in human health. J Am Coll Nutr 14:229–232.

    CAS  PubMed  Google Scholar 

  • Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, Weiner JH, Strynadka NCJ (2004) Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem 279:50391–50400.

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson J, Cherukuri P, DeWeese-Scott C, Geer L, Gwadz M, He S, Hurwitz D, Jackson J, Ke Z, Lanczycki C, Liebert C, Liu C, Lu F, Marchler G, Mullokandov M, Shoemaker B, Simonyan V, Song J, Thiessen P, Yamashita R, Yin J, Zhang D, Bryant S (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–196.

    Article  CAS  PubMed  Google Scholar 

  • McEvily AJ, Iyengar R, Otwell WS (1992) Inhibition of enzymatic browning in foods and beverages. Crit Rev Food Sci Nutr 32:253–273.

    Article  CAS  PubMed  Google Scholar 

  • McEwan AG, Lewin A, Davy SL, Boetzel R, Leech A, Walker D, Wood T, Moore GR (2002) PrrC from Rhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol- disulfide oxidoreductase activity. FEBS Lett 518:10–16.

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR (2005) Molybdenum: biological activity and metabolism. Dalton Trans 3404–3409.

    Google Scholar 

  • Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi H, Nojima Y, Tanaka T, Ueki K, Maezawa A, Yano S, Naruse T (1998) Sulfite is released by human neutrophils in response to stimulation with lipopolysaccharide. J Leukoc Biol 64:595–599.

    CAS  PubMed  Google Scholar 

  • Mitsuhashi H, Yamashita S, Ikeuchi H, Kuroiwa T, Kaneko Y, Hiromura K, Ueki K, Nojima Y (2005) Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 24:529–534.

    Article  CAS  PubMed  Google Scholar 

  • Moller S, Croning MDR, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–633.

    Article  CAS  PubMed  Google Scholar 

  • Myers JD, Kelly DJ (2005) A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151:233–242.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen H, Brunak S, VonHeijne G (1999) Machine learning approaches to the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9.

    Article  CAS  PubMed  Google Scholar 

  • Pukall R, Buntefuß D, Frühling A, Rohde M, Kroppenstedt RM, Burghardt J, Lebaron P, Bernard L, Stackebrandt E (1999) Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alphaproteobacteria. Int J Syst Evol Microbiol 49:513–519.

    Article  CAS  Google Scholar 

  • Quentmeier A, Kraft R, Kostka S, Klockenkamper R, Friedrich CG (2000) Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Arch Microbiol 173:117–125.

    Article  CAS  PubMed  Google Scholar 

  • Raitsimring AM, Kappler U, Feng CJ, Astashkin AV, Enemark JH (2005) Pulsed EPR studies of a bacterial sulfite-oxidizing enzyme with pH invariant hyperfine interactions from exchangeable protons. Inorg Chem 44:7283–7285.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan KV (1980) Sulfite oxidase (sulfite: ferricytochrome c oxidoreductase). In: Coughlan MP (ed) Molybdenum and molybdenum-containing enzymes. Pergamon, Oxford, pp 243–272.

    Google Scholar 

  • Ratthe C, Pelletier M, Roberge CJ, Girard D (2002) Activation of human neutrophils by the pollutant sodium sulfite: effect on cytokine production, chemotaxis, and cell surface expression of cell adhesion molecules. Clin Immunol 105:169–175.

    Article  CAS  PubMed  Google Scholar 

  • Roy AB, Trudinger PA (1970) The chemistry of some sulfur compounds. In: Roy AB, Trudinger PA (eds) The biochemistry of inorganic sulfur compounds. Cambridge University Press, London, pp 7–42.

    Google Scholar 

  • Schrader N, Fischer K, Theis K, Mendel RR, Schwarz G, Kisker C (2003) The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 11:1251–1263.

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY (1995) Sulfitobacter pontiacus gen. nov., sp. nov.–a new heterotrophic bacterium from the black sea specialized on sulfite oxidation. Microbiology 64:295–305.

    Google Scholar 

  • Sorokin DY, Kuenen GJ, Jetten MSM (2000) Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175:94–101.

    Article  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.

    CAS  PubMed  Google Scholar 

  • Wagner-Doebler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280.

    Article  CAS  Google Scholar 

  • Wodara C, Bardischewsky F, Friedrich CG (1997) Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: Essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 179:5014–5023.

    CAS  PubMed  Google Scholar 

  • Yamanaka T, Yoshioka T, Kimura K (1981) Purification of sulphite cytochrome c reductase of Thiobacillus novellus and reconstitution of its sulphite oxidase system with the purified constituents. Plant Cell Physiol 22:613–622.

    CAS  Google Scholar 

  • Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity–direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kappler, U. (2008). Bacterial Sulfite-Oxidizing Enzymes – Enzymes for Chemolithotrophs Only?. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_13

Download citation

Publish with us

Policies and ethics