Skip to main content

Modelling Multiple-Classifier Relationships Using Bayesian Belief Networks

  • Conference paper
Multiple Classifier Systems (MCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4472))

Included in the following conference series:

Abstract

Because of the lack of a clear guideline or technique for selecting classifiers which maximise diversity and accuracy, the development of techniques for analysing classifier relationships and methods for generating good constituent classifiers remains an important research direction. In this paper we propose a framework based on the Bayesian Belief Networks (BBN) approach to classification. In the proposed approach the multiple-classifier system is conceived at a meta-level and the relationships between individual classifiers are abstracted using Bayesian structural learning methods. We show that relationships revealed by the BBN structures are supported by standard correlation and diversity measures. We use the dependency properties obtained by the learned Bayesian structure to illustrate that BBNs can be used to explore classifier relationships, and for classifier selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  2. Roli, F., Giacinto, G., Vernazza, G.: Methods for designing multiple classifier systems. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, Springer, Heidelberg (2001)

    Google Scholar 

  3. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, San Mateo, CA (1997)

    Google Scholar 

  4. Stefano, C.D., Marcelli, A.: Exploiting Reliability for Dynamic Selection of Classifiers by Means of Genetic Algorithms. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003) (2003)

    Google Scholar 

  5. Chindaro, S., Sirlantzis, K., Fairhurst, M.C.: Analysis and Modelling of Diversity Contribution to Ensemble-Based Texture Recognition Performance. In: Oza, N.C., et al. (eds.) MCS 2005. LNCS, vol. 3541, Springer, Heidelberg (2005)

    Google Scholar 

  6. Kuncheva, L., Kountch, R.: Generating classifier outputs of fixed accuracy and diversity. Pattern Recognition Letters 23, 593–600 (2002)

    Article  MATH  Google Scholar 

  7. Ho, T.K.: Multiple Classifier Combination: Lessons and Next Steps. In: Hybrid Methods in Pattern Recognition, pp. 171–198. World Scientific, Singapore (2002)

    Google Scholar 

  8. Pavlovic, V., Garg, A., Kasif, S.: A Bayesian Framework for Combining Gene Predictions. Bioinformatics 1, 19–27 (2002)

    Article  Google Scholar 

  9. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  10. Jordan, M.I.: Learning Graphical Models. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  11. Cooper, G.F., Herskovits, E.: A Bayesian Method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  12. Herskovits, E.H.: Computer-based probabilistic network construction. Medical information sciences, Doctoral dissertation, Stanford University, Stanford, CA (1991)

    Google Scholar 

  13. Suzuki, J.: Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. In: Proceedings of the international conference on machine learning, Bally, Italy (1996)

    Google Scholar 

  14. Fung, R.M.,, R.M., Crawford, S.L.: Constructor: a system for the induction of probabilistic models. In: Proceedings of AAAI, Boston, MA, MIT Press, Cambridge

    Google Scholar 

  15. Srinivas, S., Russell, S., Agogino, A.: Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information. In: Uncertainty in artificial intelligence vol. 5, North-Holland, Amsterdam (1990)

    Google Scholar 

  16. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

    MATH  Google Scholar 

  17. Duin, R.P.W., et al.: PRTools 4, “A Matlab Toolbox for Pattern Recognition”. Delft University of Technology (2004)

    Google Scholar 

  18. UCI: Repository of machine learning databases. University of California, Irvine, Dept. of Inform. and Comp. Sc. (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  19. Sirlantzis, K., Hoque, S., Fairhurst, M.C.: Classifier Diversity Estimation in a Multiclassifier Face Recognition System based on Binary Feature Quantisation. In: Proceedings of the 4th International Conference on Recent Advances in Soft Computing (RASC 2002), Nottingham, UK (2002)

    Google Scholar 

  20. Yule, G.: On the association of attributes in statistics. Phil. Transaction A(194), 257–319 (1900)

    Article  Google Scholar 

  21. Sneath, P., Sokal, R.: Numerical Taxonomy. W.H. Freeman and Company, New York (1973)

    MATH  Google Scholar 

  22. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  23. Giacinto, G., Roli, F.: Design of effective neural network ensembles for image classification processes. Image and Vision Computing Journal 19(9-10), 699–707 (2001)

    Article  Google Scholar 

  24. Ruta, D., Gabrys, B.: New Measure of Classifier Dependency in Multiple Classifier Systems. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michal Haindl Josef Kittler Fabio Roli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Chindaro, S., Sirlantzis, K., Fairhurst, M. (2007). Modelling Multiple-Classifier Relationships Using Bayesian Belief Networks. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72523-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72481-0

  • Online ISBN: 978-3-540-72523-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics