Skip to main content

Quantum Multiparty Communication Complexity and Circuit Lower Bounds

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

We define a quantum model for multiparty communication complexity and prove a simulation theorem between the classical and quantum models. As a result, we show that if the quantum k-party communication complexity of a function f is \(\Omega(\frac{n}{2^k})\), then its classical k-party communication is \(\Omega(\frac{n}{2^{k/2}})\). Finding such an f would allow us to prove strong classical lower bounds for k ≥ logn players and make progress towards solving a main open question about symmetric circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Quantum Computing, Postselection, and Probabilistic Polynomial-Time. Proceedings of the Royal Society A 461(2063), 3473–3482 (2063)

    Article  MathSciNet  Google Scholar 

  2. Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: Proc. 45th IEEE FOCS (2004)

    Google Scholar 

  3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. Journal of Computer and System Sciences 45(2), 204–232 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beigel, R., Tarui, J.: On ACC. Computational Complexity (1994)

    Google Scholar 

  5. Bar-Yossef, Z., Jayram, T.S., Kerenidis, I.: Exponential Separation of Quantum and Classical One-Way Communication Complexity. In: Proceedings of 36th ACM STOC (2004)

    Google Scholar 

  6. Buhrman, H., et al.: Quantum fingerprinting. Physical Review Letters 87(16) (2001)

    Google Scholar 

  7. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the 15th annual ACM STOC (1983)

    Google Scholar 

  8. Chung, F.: Quasi-random classes of hypergraphs. Random Structures and Algorithms (1990)

    Google Scholar 

  9. Grolmusz, V.: The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal. Information and Computation (1994)

    Google Scholar 

  10. Hastad, J., Goldmann, M.: On the power of small-depth threshold circuits. Computational Complexity 1, 113–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kerenidis, I., de Wolf, R.: Exponential Lower Bound for 2-Query Locally Decodable Codes via a Quantum Argument. In: Proceedings of the 15th annual ACM STOC (2003)

    Google Scholar 

  12. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Raz, R.: The BNS-Chung Criterion for multi-party communication complexity. Journal of Computational Complexity 9(2), 113–122 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Raz, R.: Exponential separation of quantum and classical communication complexity. In: Proceedings of 31st ACM STOC (1999)

    Google Scholar 

  16. Wehner, S., de Wolf, R.: Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1424–1436. Springer, Heidelberg (2005)

    Google Scholar 

  17. de Wolf, R.: Lower Bounds on Matrix Rigidity via a Quantum Argument. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 62–71. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Yao, A.C.: On ACC and threshold circuits. In: Proc. 31st Ann. IEEE FOCS (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerenidis, I. (2007). Quantum Multiparty Communication Complexity and Circuit Lower Bounds. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics