Skip to main content

Abstract

Many optimisation problems contain substructures involving constraints on sequences of decision variables. Such constraints can be very complex to express with mixed integer programming (MIP), while in constraint programming (CP), the global constraint regular easily represents this kind of substructure with deterministic finite automata (DFA). In this paper, we use DFAs and the associated layered graph structure built for the regular constraint consistency algorithm to develop a MIP version of the constraint. We present computational results on an employee timetabling problem, showing that this new modeling approach can significantly decrease computational times in comparison with a classical MIP formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

    Google Scholar 

  2. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research 153, 3–27 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An annotated bibliography of personnel scheduling and rostering. Annals of Operations Research 127, 21–144 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dantzig, G.: A comment on Edie’s traffic delay at toll booths. Operations Research 2, 339–341 (1954)

    MathSciNet  Google Scholar 

  5. Segal, M.: The operator-scheduling problem: A network-flow approach. Operations Research 22, 808–823 (1974)

    MATH  Google Scholar 

  6. Moondra, B.: An LP model for work force scheduling for banks. Journal of Bank Research 7, 299–301 (1976)

    Google Scholar 

  7. Bechtolds, S., Jacobs, L.: Implicit optimal modeling of flexible break assigments. Management Science 36, 1339–1351 (1990)

    Google Scholar 

  8. Bechtolds, S., Jacobs, L.: The equivalence of general set-covering and implicit integer programming formulations for shift scheduling. Naval Research Logistics 43, 223–249 (1996)

    Google Scholar 

  9. Thompson, G.: Improved implicit modeling of the labor shift scheduling problem. Management Science 41, 595–607 (1995)

    MATH  Google Scholar 

  10. Aykin, T.: Optimal shift scheduling with multiple break windows. Management Science 42, 591–602 (1996)

    MATH  Google Scholar 

  11. Brusco, M., Jacobs, L.: Personnel tour scheduling when starting-time restrictions are present. Management Science 44, 534–547 (1998)

    Article  MATH  Google Scholar 

  12. Laporte, G., Nobert, Y., Biron, J.: Rotating schedules. European Journal of Operational Research 4(1), 24–30 (1980)

    Article  Google Scholar 

  13. Balakrishan, A., Wong, R.: Model for the rotating workforce scheduling problem. Networks 20, 25–42 (1990)

    Article  MathSciNet  Google Scholar 

  14. Isken, M.: An implicit tour scheduling model with applications in healthcare. Annals of Operations Research (Special Issue on Staff Scheduling and Rostering) 128, 91–109 (2004)

    Article  MATH  Google Scholar 

  15. Çezik, T., Günlük, O., Luss, H.: An integer programming model for the weekly tour scheduling problem. Naval Research Logistic 48(7) (1999)

    Google Scholar 

  16. Millar, H., Kiragu, M.: Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming. European Journal of Operational Research 104(3), 582–592 (1998)

    Article  MATH  Google Scholar 

  17. Ernst, A., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, h., Sier, D.: Rostering ambulance officers. In: Proceedings of the 15th National Conference of the Australian Society for Operations Research, Gold Coast, pp. 470–481 (1999)

    Google Scholar 

  18. Sodhi, M.S.: A flexible, fast, and optimal modeling approach applied to crew rostering at London Underground. Annals of Operations Research 127, 259–281 (2003)

    Article  Google Scholar 

  19. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  20. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft global constraints. Journal of Heuristics 12(4-5), 347–373 (2006)

    Article  MATH  Google Scholar 

  21. Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column generation approach. Constraints 11(4), 315–333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  24. Demassey, S., Pesant, G., Rousseau, L.-M.: Constraint programming based column generation for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 140–154. Springer, Heidelberg (2005)

    Google Scholar 

  25. Achterberg, T.: SCIP - a framework to integrate constraint and mixed integer programming. Technical Report 04-19, Zuse Institute Berlin (2004), http://www.zib.de/Publications/abstracts/ZR-04-19/

  26. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 530–544. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pascal Van Hentenryck Laurence Wolsey

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Côté, MC., Gendron, B., Rousseau, LM. (2007). Modeling the Regular Constraint with Integer Programming. In: Van Hentenryck, P., Wolsey, L. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2007. Lecture Notes in Computer Science, vol 4510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72397-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72397-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72396-7

  • Online ISBN: 978-3-540-72397-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics