Skip to main content

The Hyperon-Nucleon Interaction: Conventional Versus Effective Field Theory Approach

  • Chapter
Topics in Strangeness Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 724))

Abstract

Hyperon-nucleon interactions are presented that are derived either in the conventional meson-exchange picture or within leading order chiral effective field theory. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. With regard to meson-exchange YN models we focus on the new potential of the Jülich group, whose most salient feature is that the contributions in the scalar–isoscalar (σ) and vector–isovector (ϱ) exchange channels are constrained by a microscopic model of correlated ππ and KK exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Machleidt, K. Holinde, and C. Elster: Phys. Rep. 149, 1 (1987)

    Article  Google Scholar 

  2. R. Machleidt and I. Slaus: J. Phys. G27, R69 (2001)

    ADS  Google Scholar 

  3. P. M. M. Maessen, T. A. Rijken, and J. J. de Swart: Phys. Rev. C 40, 2226 (1989)

    Article  ADS  Google Scholar 

  4. B. Holzenkamp, K. Holinde, and J. Speth: Nucl. Phys. A 500, 485 (1989)

    Article  ADS  Google Scholar 

  5. A. Reuber, K. Holinde, and J. Speth: Nucl. Phys. A 570, 543 (1994)

    Article  ADS  Google Scholar 

  6. K. Tominaga et al: Nucl. Phys. A 642, 483 (1998)

    Article  ADS  Google Scholar 

  7. T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto: Phys. Rev. C 59, 21 (1999)

    Article  ADS  Google Scholar 

  8. K. Tominaga and T. Ueda: Nucl. Phys. A 693, 731 (2001)

    Article  ADS  Google Scholar 

  9. J. Haidenbauer and U. -G. Meißner: Phys. Rev. C 72, 044005 (2005)

    Article  ADS  Google Scholar 

  10. T. A. Rijken and Y. Yamamoto: Phys. Rev. C 73, 044008 (2006)

    Article  ADS  Google Scholar 

  11. E. Klempt, F. Bradamante, A. Martin, and J. -M. Richard: Phys. Rep. 368, 119 (2002)

    Article  ADS  Google Scholar 

  12. P. F. Bedaque and U. van Kolck: Annu. Rev. Nucl. Part. Sci. 52, 339 (2002)

    Article  ADS  Google Scholar 

  13. D. Kaplan: Lectures delivered at the 17th National Nuclear Physics Summer School 2005, Berkeley, CA, June 6–17, 2005; nucl-th/0510023

    Google Scholar 

  14. E. Epelbaum: Prog. Nucl. Part. Phys. 57, 654 (2006)

    Article  ADS  Google Scholar 

  15. E. Epelbaum, W. Glöckle, and U. -G. Meißner: Nucl. Phys. A 747, 362 (2005)

    Article  ADS  Google Scholar 

  16. D. R. Entem and R. Machleidt: Phys. Rev. C 68, 041001 (2003)

    Article  ADS  Google Scholar 

  17. S. Weinberg: Phys. Lett. B 251, 288 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Weinberg: Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  19. E. Epelbaoum, W. Glöckle, and U. -G. Meißner: Nucl. Phys. A 637, 107 (1998)

    Article  ADS  Google Scholar 

  20. M. J. Savage and M. B. Wise: Phys. Rev. D 53, 349 (1996)

    Article  ADS  Google Scholar 

  21. H. W. Hammer: Nucl. Phys. A 705, 173 (2002)

    Article  ADS  Google Scholar 

  22. C. L. Korpa, A. E. L. Dieperink, and R. G. E. Timmermans: Phys. Rev. C 65, 015208 (2001)

    Article  ADS  Google Scholar 

  23. D. B. Kaplan, M. J. Savage, and M. B. Wise: Nucl. Phys. B 534, 329 (1998)

    Article  ADS  Google Scholar 

  24. S. R. Beane, P. F. Bedaque, A. Parre≁o, and M. J. Savage: Nucl. Phys. A 747, 55 (2005)

    Article  ADS  Google Scholar 

  25. S. R. Beane et al: hep-lat/0612026

    Google Scholar 

  26. H. Polinder, J. Haidenbauer, and U. -G. Meißner: Nucl. Phys. A 779, 244 (2006)

    Article  ADS  Google Scholar 

  27. C. M. Vincent and S. C. Phatak: Phys. Rev. C 10, 391 (1974)

    Article  ADS  Google Scholar 

  28. M. Walzl, U. -G. Meißner, and E. Epelbaum: Nucl. Phys. A 693, 663 (2001)

    Article  MATH  ADS  Google Scholar 

  29. J. D. Bjorken and S. D. Drell: Relativistic Quantum Fields (McGraw-Hill Inc., New York, 1965). We follow the conventions of this reference

    MATH  Google Scholar 

  30. T. -P. Cheng and L. -F. Li: Gauge theory of elementary particle physics (Oxford University Press, Oxford, 1984)

    Google Scholar 

  31. T. A. Rijken, R. A. M. Klomp, and J. J. de Swart: in A Gift of Prophecy, Essays in Celebration of the Life of Robert Eugene Marshak, ed by E. C. G. Sudarshan (World Scientific, Singapore, 1995)

    Google Scholar 

  32. J. J. de Swart: Rev. Mod. Phys. 35, 916 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. B. Dover and H. Feshbach: Ann. Phys. 198, 321 (1990)

    Article  ADS  Google Scholar 

  34. E. Epelbaum, W. Glöckle, and U. -G. Meißner: Nucl. Phys. A 671, 295 (2000)

    Article  ADS  Google Scholar 

  35. U.-G. Meißner: Rep. Prog. Phys. 56, 903 (1993)

    Article  ADS  Google Scholar 

  36. E. Epelbaum et al: Eur. Phys. J. A 15, 543 (2002)

    Article  ADS  Google Scholar 

  37. E. Epelbaum, W. Glöckle, and U. -G. Meißner: Eur. Phys. J. A 19, 401 (2004)

    Article  ADS  Google Scholar 

  38. B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein: Phys. Rev. 175, 1735 (1968)

    Article  ADS  Google Scholar 

  39. G. Alexander et al: Phys. Rev. 173, 1452 (1968)

    Article  ADS  Google Scholar 

  40. F. Eisele, H. Filthuth, W. Fölisch, V. Hepp, and G. Zech: Phys. Lett 37B, 204 (1971)

    Google Scholar 

  41. R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge: Phys. Lett. 21, 587 (1966)

    Article  ADS  Google Scholar 

  42. J. J. de Swart and C. Dullemond: Ann. Phys. 19, 485 (1962)

    Google Scholar 

  43. M. M. Nagels, T. A. Rijken, and J. J. de Swart: Phys. Rev. D 15, 2547 (1977)

    Article  ADS  Google Scholar 

  44. E. Klempt: Glueballs, Hybrids, Pentaquarks : Introduction to Hadron Spectroscopy and Review of Selected Topics, Lectures at the 18th Annual Hampton University Graduate Studies, Jefferson Lab, Newport News, VA, June 2–20, 2003; hep-ph/0404270

    Google Scholar 

  45. Y. Kalashnikova, A. E. Kudryavtsev, A. V. Nefediev, J. Haidenbauer, and C. Hanhart: Phys. Rev. C 73, 045203 (2006)

    Article  ADS  Google Scholar 

  46. A. Reuber, K. Holinde, H. -C. Kim, and J. Speth: Nucl. Phys. A 608, 243 (1996)

    Article  ADS  Google Scholar 

  47. G. Janssen, B. Pierce, K. Holinde, and J. Speth: Phys. Rev. D 52, 2690 (1995)

    Article  ADS  Google Scholar 

  48. D. Lohse, J. Durso, K. Holinde, and J. Speth: Nucl. Phys. A 516, 513 (1990)

    Article  ADS  Google Scholar 

  49. G. Janssen, K. Holinde, and J. Speth: Phys. Rev. C 54, 2218 (1996)

    Article  ADS  Google Scholar 

  50. P. La France and P. Winternitz: J. Physique 41, 1391 (1980)

    Article  Google Scholar 

  51. J. A. Kadyk, G. Alexander, J. H. Chan, P. Gaposchkin, and G. H. Trilling: Nucl. Phys. B 27, 13 (1971)

    Article  ADS  Google Scholar 

  52. J. M. Hauptman, J. A. Kadyk, and G. H. Trilling: Nucl. Phys. B 125, 29 (1977)

    Article  ADS  Google Scholar 

  53. D. Stephen: PhD thesis, University of Massachusetts, 1975, unpublished

    Google Scholar 

  54. Y. Kondo et al: Nucl. Phys. A 676, 371 (2000)

    Article  ADS  Google Scholar 

  55. J. K. Ahn et al: Nucl. Phys. A 648, 263 (1999)

    Article  ADS  Google Scholar 

  56. A. Nogga, J. Haidenbauer, H. Polinder, and U. -G. Meißner: in preparation

    Google Scholar 

  57. B. F. Gibson and E. V. Hungerford: Phys. Rep. 257, 349 (1995)

    Article  ADS  Google Scholar 

  58. A. Nogga: Application of chiral nuclear forces to light nuclei, 5th Int. Workshop on Chiral Dynamics, Theory and Experiment, Durham/Chapel Hill, NC, Sept. 18–22, 2006; nucl-th/0611081

    Google Scholar 

  59. A. Nogga, H. Kamada, and W. Glöckle: Phys. Rev. Lett. 88, 172501 (2002)

    Article  ADS  Google Scholar 

  60. J. Ahn et al: Phys. Lett. B 633, 214 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haidenbauer, J., Meißner, UG., Nogga, A., Polinder, H. (2007). The Hyperon-Nucleon Interaction: Conventional Versus Effective Field Theory Approach. In: Bydžovský, P., Mareš, J., Gal, A. (eds) Topics in Strangeness Nuclear Physics. Lecture Notes in Physics, vol 724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72039-3_4

Download citation

Publish with us

Policies and ethics