Skip to main content

A Fast and Exact Algorithm for the Perfect Reversal Median Problem

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

We study the problem of finding for the gene orders of three taxa a potential ancestral gene order such that the corresponding rearrangement scenario has a minimal number of reversals where each of the reversals has to preserve the common intervals of the given input gene orders. Common intervals identify sets of genes that occur consecutively in all input gene orders. The problem of finding such an ancestral gene order is called the perfect reversal median problem (pRMP). A tree based data structure for the representation of the common intervals of all input gene orders is used for the design and realization of a fast and exact algorithm — called TCIP — for solving the pRMP. It is known that for two given gene orders the minimum number of reversals to transfer one gene order into the other can be computed in polynomial time, whereas the corresponding problem with the restriction that common intervals should not be destroyed by the reversals is already NP-hard. Nevertheless, we show empirically on biological and artificial data that TCIP for the pRMP is usually even faster than the fastest exact algorithm (Caprara’s median solver) for the reversal median problem (RMP), i.e., the corresponding problem in which the common intervals are not considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–15. Springer, Heidelberg (2005)

    Google Scholar 

  2. Bérard, S., et al.: Perfect sorting by reversals is not always difficult. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1), 4–16 (2007)

    Article  Google Scholar 

  3. Bergeron, A., et al.: Reconstructing ancestral gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

    Google Scholar 

  4. Bergeron, A., et al.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Google Scholar 

  6. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. J. Comp. Biol. 13(7), 1345–1354 (2006)

    MathSciNet  Google Scholar 

  7. Bernt, M., Merkle, D., Middendorf, M.: A parallel algorithm for solving the reversal median problem. In: Wyrzykowski, R., et al. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 1089–1096. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bernt, M., Merkle, D., Middendorf, M.: Genome rearrangement based on reversals that preserve conserved intervals. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(3), 275–288 (2006)

    Article  Google Scholar 

  9. Bernt, M., Merkle, D., Middendorf, M.: The reversal median problem, common intervals, and mitochondrial gene orders. In: R. Berthold, M., Glen, R.C., Fischer, I. (eds.) CompLife 2006. LNCS (LNBI), vol. 4216, pp. 52–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phylogenetic trees. Bioinformatics 23(2), e129–e135 (2007)

    Article  Google Scholar 

  11. Boore, J.L.: Mitochondrial gene arrangement database (2006), http://evogen.jgi.doe.gov/

  12. Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  13. Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15(1), 93–113 (2003)

    Article  MathSciNet  Google Scholar 

  14. Figeac, M., Varré, J.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Google Scholar 

  15. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, pp. 178–189. ACM Press, New York (1995)

    Chapter  Google Scholar 

  16. Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)

    Google Scholar 

  17. Moret, B., et al.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and gene-order data. In: Mathematics of Evolution and Phylogeny (2005)

    Google Scholar 

  19. Siepel, A., Moret, B.: Finding an optimal inversion median: Experimental results. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances in sorting by reversals. Accepted at Discrete Applied Mathematics (2005)

    Google Scholar 

  21. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 2(26), 290–309 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernt, M., Merkle, D., Middendorf, M. (2007). A Fast and Exact Algorithm for the Perfect Reversal Median Problem. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics