Skip to main content

Peptide Retention Time Prediction Yields Improved Tandem Mass Spectrum Identification for Diverse Chromatography Conditions

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

Most tandem mass spectrum identification algorithms use information only from the final spectrum, ignoring precursor information such as peptide retention time (RT). Efforts to exploit peptide RT for peptide identification can be frustrated by its variability across liquid chromatography analyses. We show that peptide RT can be reliably predicted by training a support vector regressor on a single chromatography run. This dynamically trained model outperforms a published statically trained model of peptide RT across diverse chromatography conditions. In addition, the model can be used to filter peptide identifications that produce large discrepancies between observed and predicted RT. After filtering, estimated true positive peptide identifications increase by as much as 50% at a false discovery rate of 3%, with the largest increase for non-specific cleavage with elastase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ba̧czek, T., Wiczling, P., Marszałł, M., Heyden, Y.V., Kaliszan, R.: Prediction of peptide retention at different HPLC conditions from multiple linear regression models. Journal of Proteome Research 4, 555–563 (2005)

    Article  Google Scholar 

  • Bihan, T.L., Robinson, M.D., Stewart, I.I., Figeys, D.J.: Definition and characterization of a “trypsinosome” from specific peptide characteristics by nano-HPLC-MS/MS and in silico analysis of complex protein mixtures. Journal of Proteome Research 3, 1138–1148 (2004)

    Article  Google Scholar 

  • Browne, C.A., Bennett, H.P.J., Solomon, S.: The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Analytical Biochemistry 124, 201–208 (1982)

    Article  Google Scholar 

  • Cargile, B.J., Bundy, J.L., Freeman, T.W., Stephenson, J.J.L.: Potential for false positive identifications from large databases through tandem mass spectrometry. Journal of Proteome Research 3, 1082–1085 (2004)

    Article  Google Scholar 

  • Eng, J.K., McCormack, A.L., Yates III., J.R.: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5, 976–989 (1994)

    Article  Google Scholar 

  • Frenz, J., Hancock, W.S., Henzel, W.J., Horva’th, C.: HPLC of Biological Macromolecules: Methods and Applications. Marcel Dekker, New York (1990)

    Google Scholar 

  • Guo, D., Mant, C.T., Taneja, A.K., Parker, J.M., Hodges, R.S.J.: Effects of ion-pairing reagents on the prediction of peptide retention in reversed-phase high-performance liquid chromatography. Journal of Chromatography 386, 205–222 (1987)

    Google Scholar 

  • Hearn, M., Aguilar, T.M.I., Mant, C.T., Hodges, R.S.: High-performance liquid chromatography of amino acids, peptides and proteins. LXXXV. evaluation of the use of hydrophobicity coefficients for the prediction of peptide elution profiles. Journal of Chromatography 438, 197–210 (1988)

    Article  Google Scholar 

  • Huttlin, E.L., Hegeman, A.D., Harms, A.C., Sussman, M.R.: Prediction of error associated with false-positive rate determination for peptide identification in large-scale proteomics experiments using a combined reverse and forward peptide sequence database strategy. Journal of Proteome Research (2006)

    Google Scholar 

  • Kawakami, T., Tateishi, K., Yamano, Y., Ishikawa, T., Kuroki, K., Nishimura, T.: Protein identification from product ion spectra of peptides validated by correlation between measured and predicted elution times in liquid chromatography/mass spectrometry. Proteomics 5, 856–864 (2005)

    Article  Google Scholar 

  • Krokhin, O.V., Craig, R., Spicer, V., Ens, W., Standing, K.G., Beavis, R.C., Wilkins, J.A.: An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase hplc. Molecular & Cellular Proteomics 3, 908–919 (2004)

    Article  Google Scholar 

  • Mant, C.T., Hodges, R.S.: Context-dependent effects on the hydrophilicity/hydrophobicity of side-chains during reversed-phase high-performance liquid chromatography: Implications for prediction of peptide retention behaviour. Journal of Chromatography A 1125, 211–219 (2006)

    Article  Google Scholar 

  • Mant, C.T., Zhou, N.E., Hodges, R.S.: Correlation of protein retention times in reversed-phase chromatography with polypeptide chain length and hydrophobicity. Journal of Chromatography A 476, 363–375 (1989)

    Article  Google Scholar 

  • McCormack, A.L., Schieltz, D.M., Goode, B., Yang, S., Barnes, G., Drubin, D., Yates III., J.R.: Direct analysis and identification of proteins in mixtures by LC-MS/MS and database searching at the low-femtomole level. Analytical Chemistry 69(4), 767–776 (1997)

    Article  Google Scholar 

  • Meek, J.L.: Prediction of peptide retention times in high-pressure liquid chromatographic on the basis of amino acid composition. Proceedings of the National Academy of Sciences of the United States of America 77, 1632–1636 (1980)

    Article  Google Scholar 

  • Palmblad, M., Ramstrom, M., Bailey, G.B., McCutchen-Maloney, S.L., Bergquist, J., Zeller, L.C.: Protein identification by liquid chromatography-mass spectrometry using retention time prediction. Journal of Chromatography B 803, 131–135 (2004)

    Google Scholar 

  • Palmblad, M., Ramstrom, M., Markides, K.E., Hakansson, P., Bergquist, J.: Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry. Analytical Chemistry 74, 5826–5830 (2002)

    Article  Google Scholar 

  • Petritis, K., Kangas, L., Yan, B., Monroe, M.E., Strittmatter, E.F., Qian, W.J., Adkins, J.N., Moore, R.J., Xu, Y., Lipton, M.S., C. 2nd, D.G., Smith, R.D.: Improved peptide elution time prediction for reversed-phase liquid chromatography-MS by incorporating peptide sequence information. Analytical Chemistry 78(14), 5026–5039 (2006)

    Article  Google Scholar 

  • Petritis, K., Kangas, L.J., Ferguson, P.L., Anderson, G.A., Pasa-Tolic, L., Lipton, M.S., Auberry, K.J., Strittmatter, E.F., Shen, Y., Zhao, R., Smith, R.D.: Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. Analytical Chemistry 75(5), 1039–1048 (2003)

    Article  Google Scholar 

  • Qian, W.J., Liu, T., Monroe, M.E., Strittmatter, E.F., Jacobs, J.M., Kangas, L.J., Petritis, K., C. II., D.G., Smith, R.D.: Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: The human proteome. Journal of Proteome Research 4(1), 53–62 (2005)

    Article  Google Scholar 

  • Shinoda, K., Sugimoto, M., Yachie, N., Sugiyama, N., Masuda, T., Robert, M., Soga, T., Tomita, M.: Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the escherichia coli proteome using artificial neural networks. Journal of Proteome Research 5, 3312–3317 (2006)

    Article  Google Scholar 

  • Strittmatter, E.F., Kangas, L.J., Petritis, K., Mottaz, H.M., Anderson, G.A., Shen, Y., Jacobs, J.M., C. 2nd, D.G., Smith, R.D.: Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry. Journal of Proteome Research 3(4), 760–769 (2004)

    Article  Google Scholar 

  • Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  • Washburn, M.P., Wolters, D., Yates III., J.R.: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology 19, 242–247 (2001)

    Article  Google Scholar 

  • Yates III., J.R.: Mass spectrometry and the age of the proteome. Analytical Chemistry 33, 1–19 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Klammer, A.A., Yi, X., MacCoss, M.J., Noble, W.S. (2007). Peptide Retention Time Prediction Yields Improved Tandem Mass Spectrum Identification for Diverse Chromatography Conditions. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics