Skip to main content

Connectivity and Dynamics in Local Cortical Networks

  • Chapter
Handbook of Brain Connectivity

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel HD, Rabinovich MI (2001) Neurodynamics: nonlinear dynamics and neurobiology. Current Opinion in Neurobiology 11: 423–430

    Google Scholar 

  • Abarbanel HDI (1996) Analysis of observed chaotic data. New York: Springer

    MATH  Google Scholar 

  • Abeles M, Bergman H, Margalit E, Vaadia E (1993) Spatiotemporalfiring patterns in the frontal cortex of behaving monkeys. J Neurophysiol 70: 1629–1638

    Google Scholar 

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) Aresilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72

    Google Scholar 

  • Aitken PG, Sauer T, Schiff SJ (1995) Looking for chaos in brainslices. J Neurosci Methods 59: 41–48

    Google Scholar 

  • Amit DJ (1989) Modeling brain function : the world of attractor neural networks. Cambridge ; New York: Cambridge University Press

    MATH  Google Scholar 

  • Amit Y, Mascaro M (2001) Attractor networks for shape recognition. Neural Comput 13: 1415–1442

    MATH  Google Scholar 

  • Anderson JA, Silverstein JW, Ritz SA, Jones RS (1977) Distinctive Features, Categorical Perception, and Probability Learning: Some Applications of a Neural Model. Psychological Review 84: 413–451

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of on going activity: Explanation of the large variability in evokedcortical responses. Science 273: 1868–1871

    Google Scholar 

  • Babloyantz A, Destexhe A (1986) Low-dimensional chaos in aninstance of epilepsy. Proc Natl Acad Sci U S A 83: 3513–3517

    Google Scholar 

  • Bak P (1996) How nature works : the science of self-organized criticality. New York, NY, USA: Copernicus

    MATH  Google Scholar 

  • Baker GL, Gollub JP (1996) Chaotic dynamics : an introduction. Cambridge; New York: Cambridge University Press

    MATH  Google Scholar 

  • Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chancelevels. J Neurophysiol 84: 1770–1780

    Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23: 11167–11177

    Google Scholar 

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse andprecise activity patterns that are stable for many hours incortical slice cultures. J Neurosci 24: 5216–5229

    Google Scholar 

  • Beggs JM (2007) The criticality hypothesis: How local cortical networks might optimize information processing. Proceedings of the Philosophical Society A (submitted)

    Google Scholar 

  • Ben-Shaul Y, Drori R, Asher I, Stark E, Nadasdy Z, Abeles M (2004) Neuronal activity in motor cortical areas reflects the sequential context of movement. J Neurophysiol 91: 1748–1762

    Google Scholar 

  • Bertschinger N, Natschlager T (2004) Real-time computation at theedge of chaos in recurrent neural networks. Neural Comput 16: 1413–1436

    MATH  Google Scholar 

  • Bornholdt S, Rohlf T (2000) Topological evolution of dynamical networks: global criticality from local dynamics. Phys Rev Lett84: 6114–6117

    Google Scholar 

  • Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 360: 1051–1074

    Google Scholar 

  • Breakspear M, Terry JR, Friston KJ (2003) Modulation of excitatorysynaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14: 703–732

    Google Scholar 

  • Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) Astatistical paradigm for neural spike train decoding applied toposition prediction from ensemble firing patterns of rathippocampal place cells. J Neurosci 18: 7411–7425

    Google Scholar 

  • Brunel N (2000) Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. J Physiol Paris 94: 445–463

    Google Scholar 

  • Canli T, Desmond JE, Zhao Z, Gabrieli JD (2002) Sex differences in the neural basis of emotional memories. Proc Natl Acad Sci U S A 99: 10789–10794

    Google Scholar 

  • Chi Z, Margoliash D (2001) Temporal precision and temporal driftin brain and behavior of zebra finch song. Neuron 32: 899–910

    Google Scholar 

  • Cohen MA, Grossberg S (1983) Absolute stability of global patternformation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics SMC-13: 815–826

    MathSciNet  Google Scholar 

  • Cossart R, Aronov D, Yuste R (2003) Attractor dynamics of network UP states in the neocortex. Nature 423: 283–288

    Google Scholar 

  • Crutchfield JP, Farmer JD, Packard NH, Shaw RS (1986) Chaos. SciAm 255: 46–&.

    Google Scholar 

  • Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290: 812–816

    Google Scholar 

  • Deregnaucourt S, Mitra PP, Feher O, Pytte C, Tchernichovski O (2005) How sleep affects the developmental learning of bird song. Nature 433: 710–716

    Google Scholar 

  • Derrida B, Pomeau Y (1986) Random Networks of Automata - a Simple Annealed Approximation. Europhys Lett 1: 45–49

    Google Scholar 

  • Derrida B, Weisbuch G (1986) Evolution of Overlaps between Configurations in Random Boolean Networks. J Phys-Paris 47: 1297–1303

    Google Scholar 

  • Ding M, Yang W, In VV, Ditto WL, Spano ML, Gluckman B (1996) Controlling chaos in high dimensions: Theory and experiment. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 53: 4334–4344

    MathSciNet  Google Scholar 

  • Ditto WL, Showalter K (1997) Introduction: Control and synchronization of chaos. Chaos 7: 509–511

    MathSciNet  Google Scholar 

  • Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94: 018102

    Google Scholar 

  • Fletcher P, Buchel C, Josephs O, Friston K, Dolan R (1999) Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging. Cereb Cortex 9: 168–178

    Google Scholar 

  • Foss J, Longtin A, Mensour B and Milton JG (1996) Multistability and delayed recurrent loops. Phys. Rev. Lett. 76: 708–711

    Google Scholar 

  • Foss J and Milton J (2000) Multistability in recurrent neuralloops arising from delay. J. Neurophysiol. 84: 975–985

    Google Scholar 

  • Fox JJ, Hill CC (2001) From topology to dynamics in biochemical networks. Chaos 11: 809–815

    MATH  MathSciNet  Google Scholar 

  • Frechette ES, Sher A, Grivich MI, Petrusca D, Litke AM, Chichilnisky EJ (2005) Fidelity of the ensemble code for visual motion in primateretina. J Neurophysiol 94: 119–135

    Google Scholar 

  • Freeman WJ (1994) Neural networks and chaos. J Theor Biol 171: 13–18

    Google Scholar 

  • Gutenberg B, Richter CF (1941) Seismicity of the earth. [NewYork]: The Society

    Google Scholar 

  • Gutowitz H, Langton C (1995) Mean field theory of the edge ofchaos. Advances in Artificial Life 929: 52–64

    Google Scholar 

  • Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419: 65–70

    Google Scholar 

  • Haldeman C, Beggs JM (2005) Critical branching captures activity in living neural networks and maximizes the number of metastable States. Phys Rev Lett 94: 058101

    Google Scholar 

  • Harris TE (1989) The theory of branching processes. New York:Dover Publications

    Google Scholar 

  • Hebb DO (1949) The organization of behavior; a neuropsychological theory. New York,: Wiley

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci US A 79: 2554–2558

    MathSciNet  Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. ProcNatl Acad Sci U S A 81: 3088–3092

    Google Scholar 

  • Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233: 625–633

    Google Scholar 

  • Huberman BA, Crutchfield JP, Packard NH (1980) Noise Phenomena in Josephson Junctions. Appl Phys Lett 37: 750–752

    Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JA (2005) Functional MRI revealsthe existence of modality and coordination-dependent timing networks. Neuroimage 25: 1031–1042

    Google Scholar 

  • Jensen HJ (1998) Self-organized criticality : emergent complex behavior in physical and biological systems. Cambridge, U.K. ; NewYork: Cambridge University Press

    MATH  Google Scholar 

  • Jin DZ (2002) Fast convergence of spike sequences to periodic patterns in recurrent networks. Phys Rev Lett 89: 208102

    Google Scholar 

  • Jirsa VK (2004) Connectivity and dynamics of neural information processing. Neuro informatics 2: 183–204

    Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge, UK ; New York: Cambridge University Press

    MATH  Google Scholar 

  • Kauffman S (1969) Homeostasis and Differentiation in Random Genetic Control Networks. Nature 224: 177

    Google Scholar 

  • Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. PNatl Acad Sci USA 100: 14796–14799

    Google Scholar 

  • Kauffman SA, Johnsen S (1991) Coevolution to the Edge of Chaos -Coupled Fitness Landscapes, Poised States, and Coevolutionary Avalanches. J Theor Biol 149: 467–505

    Google Scholar 

  • Kelso SR, Ganong AH, Brown TH (1986) Hebbian synapses in hippocampus. Proc Natl Acad Sci U S A 83: 5326–5330

    Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425: 954–956

    Google Scholar 

  • Kilgore MH, Turner JS, Mccormick WD, Swinney H (1981) Periodic and Chaotic Oscillations in the Belousovzhabotinskii Reaction. B Am Phys Soc 26: 362–362

    Google Scholar 

  • Kirkwood A, Bear MF (1994) Hebbian synapses in visual cortex. J Neurosci 14: 1634–1645

    Google Scholar 

  • Latham PE, Nirenberg S (2004) Computing and stability in cortical networks. Neural Comput 16: 1385–1412

    MATH  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36: 1183–1194

    Google Scholar 

  • Lee AK, Wilson MA (2004) A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order. J Neurophysiol 92: 2555–2573

    Google Scholar 

  • Leger JF, Stern EA, Aertsen A, Heck D (2005) Synaptic integration in rat frontal cortex shaped by network activity. J Neurophysiol 93: 281–293

    Google Scholar 

  • Lindsey BG, Morris KF, Shannon R, Gerstein GL (1997) Repeated patterns of distributed synchrony in neuronal assemblies. J Neurophysiol 78: 1714–1719

    Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29: 145–156

    Google Scholar 

  • Maass W, Natschlager T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14: 2531–2560

    MATH  Google Scholar 

  • Malamud BD, Morein G, Turcotte DL (1998) Forest fires: An example of self-organized critical behavior. Science 281: 1840–1842

    Google Scholar 

  • Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R (2001) Dynamics of spontaneous activity in neocortical slices. Neuron 32: 883–898

    Google Scholar 

  • Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309: 2228–2232

    Google Scholar 

  • Mechelli A, Price CJ, Friston KJ, Ishai A (2004) Where bottom-upmeets top-down: neuronal interactions during perception and imagery. Cereb Cortex 14: 1256–1265

    Google Scholar 

  • Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19: 9497–9507

    Google Scholar 

  • Natschlager T, Maass W (2005) Dynamics of information and emergent computation in generic neural microcircuit models. Neural Netw 18: 1301–1308

    Google Scholar 

  • Netoff TI, Clewley R, Arno S, Keck T, White JA (2004) Epilepsy insmall-world networks. J Neurosci 24: 8075–8083

    Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity : an introduction. New York: W.H. Freeman

    Google Scholar 

  • Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol 81: 3021–3033

    Google Scholar 

  • Paczuski M, Maslov S, Bak P (1996) Avalanche dynamics inevolution, growth, and depinning models. Physical Review E Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 53: 414–443

    Google Scholar 

  • Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HDI, Laurent G (2001) Dynamical encoding by networks of competing neuron groups: Winnerless competition. Physical Review Letters 8706

    Google Scholar 

  • Ramón y Cajal S (1909) Histologie du systéme nerveux del’homme & des vertébrés. Paris,: Maloine

    Google Scholar 

  • Rolls ET (1990) Theoretical and neurophysiological analysis of the functions of the primate hippocampus in memory. Cold Spring Harb Symp Quant Biol 55: 995–1006

    Google Scholar 

  • Rowe J, Friston K, Frackowiak R, Passingham R (2002) Attention toaction: specific modulation of corticocortical interactions in humans. Neuroimage 17: 988–998

    Google Scholar 

  • Schiff SJ, Jerger K, Duong DH, Chang T, Spano ML, Ditto WL (1994) Controlling chaos in the brain. Nature 370: 615–620

    Google Scholar 

  • Segev R, Baruchi I, Hulata E, Ben-Jacob E (2004) Hidden neuronal correlations in cultured networks. Phys Rev Lett 92: 118102

    Google Scholar 

  • Seung HS (1998) Continuous attractors and oculomotor control. Neural Networks 11: 1253–1258

    Google Scholar 

  • Sinha S, Ditto WL (1999) Computing with distributed chaos. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60: 363–377

    Google Scholar 

  • Skaggs WE, McNaughton BL (1992) Computational approaches to hippocampal function. Curr Opin Neurobiol 2: 209–211

    Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6: 149–172

    Google Scholar 

  • Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in localcortical circuits. PLoS Biol 3: e68

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13: 909–922

    Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1: e42

    Google Scholar 

  • Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuro informatics 2: 145–162

    Google Scholar 

  • Spors H, Grinvald A (2002) Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34: 301–315

    Google Scholar 

  • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2006) Small-World Networks and Functional Connectivity in Alzheimer’sDisease. Cereb Cortex

    Google Scholar 

  • Stanley HE (1987) Introduction to phase transitions and critical phenomena. New York: Oxford University Press

    Google Scholar 

  • Steinbuch K (1961) Die lernmatrix. Kybernetik 1: 36–45

    MATH  Google Scholar 

  • Steinbuch K, Frank H (1961) [Non-digital learning matrices asperceptors.]. Kybernetik 1: 117–124

    Google Scholar 

  • Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301: 384–386

    Google Scholar 

  • Strogatz SH (1994) Nonlinear dynamics and Chaos : withapplications to physics, biology, chemistry, and engineering. Reading, Mass.: Addison-Wesley Pub

    Google Scholar 

  • van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724–1726

    Google Scholar 

  • Vogels TP, Rajan K, Abbott LF (2005) Neural network dynamics. Annu Rev Neurosci 28: 357–376

    Google Scholar 

  • Wills TJ, Lever C, Cacucci F, Burgess N, O’Keefe J (2005) Attractor dynamics in the hippocampal representation of the localenvironment. Science 308: 873–876

    Google Scholar 

  • Wilson MA (2002) Hippocampal memory formation, plasticity, and therole of sleep. Neurobiol Learn Mem 78: 565–569

    Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261: 1055–1058

    Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov Exponents from a Time-Series. Physica D 16: 285–317

    MATH  MathSciNet  Google Scholar 

  • Yeomans JM (1992) Statistical mechanics of phase transitions. Oxford [England] New York: Clarendon Press ; Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beggs, J.M., Klukas, J., Chen, W. (2007). Connectivity and Dynamics in Local Cortical Networks. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_3

Download citation

Publish with us

Policies and ethics