Skip to main content

Comparing Forward and Backward Reachability as Tools for Safety Analysis

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4416))

Included in the following conference series:

Abstract

Using only the existence and uniqueness of trajectories for a generic dynamic system with inputs, we define and examine eight types of forward and backward reachability constructs. If the input is treated in a worst-case fashion, any forward or backward reach set or tube can be used for safety analysis, but if the input is treated in a best-case fashion only the backward reach tube always provides the correct results. Fortunately, forward and backward algorithms can be exchanged if well-posed reverse time trajectories can be defined. Unfortunately, backward reachability constructs are more likely to suffer from numerical stability issues, especially in systems with significant contraction—the very systems where forward simulation and reachability are most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiskens, I.A., Pai, M.A.: Trajectory sensitivity analysis of hybrid systems. IEEE Transactions on Circuits and Systems 47(2), 204–220 (2000)

    Article  Google Scholar 

  2. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43(4), 540–554 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Greenstreet, M., Mitchell, I.: Reachability analysis using polygonal projections. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 103–116. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Girard, A., Guernic, C.L., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Kurzhanski, A.B., Varaiya, P.: Reachability analysis for uncertain systems—the ellipsoidal technique. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms 9(3), 347–367 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Saint-Pierre, P.: Hybrid kernels and capture basins for impulse constrained systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 378–392. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gao, Y., Lygeros, J., Quincampoix, M.: The reachability problem for uncertain hybrid systems revisited: The viability theory perspective. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 242–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–362. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)

    Google Scholar 

  15. Stangier, C., Sidle, T.: Invariant checking combining forward and backward traversal. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 414–429. Springer, Heidelberg (2004)

    Google Scholar 

  16. Broucke, M., Arapostathis, A.: Continuous selections of trajectories of hybrid systems. Systems and Control Letters 47, 149–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lygeros, J., et al.: Dynamical properties of hybrid automata. IEEE Transactions on Automatic Control 48(1), 2–17 (2003)

    Article  MathSciNet  Google Scholar 

  18. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana University Mathematics Journal 33(5), 773–797 (1984)

    Article  MathSciNet  Google Scholar 

  19. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety analysis. Technical Report TR-2006-23, Department of Computer Science, University of British Columbia, Vancouver, BC, Canada (2006)

    Google Scholar 

  20. Hiskens, I.A.: Non-uniqueness in reverse time of hybrid system trajectories. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 339–353. Springer, Heidelberg (2005)

    Google Scholar 

  21. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    MATH  Google Scholar 

  22. Yuan, J., Svensson, C.: High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits 24(1), 62–70 (1989)

    Article  Google Scholar 

  23. Hodges, D.A., Jackson, H.G., Saleh, R.A.: Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, 3rd edn. McGraw Hill, New York (2004)

    Google Scholar 

  24. Greenstreet, M.R.: Verifying safety properties of differential equations. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Bemporad Antonio Bicchi Giorgio Buttazzo

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mitchell, I.M. (2007). Comparing Forward and Backward Reachability as Tools for Safety Analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds) Hybrid Systems: Computation and Control. HSCC 2007. Lecture Notes in Computer Science, vol 4416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71493-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71493-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71492-7

  • Online ISBN: 978-3-540-71493-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics