Skip to main content

Sparse Gene Regulatory Network Identification

  • Conference paper
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4366))

Abstract

In this paper a novel method is presented for the identification of sparse dynamical interaction networks, such as gene regulatory networks. This method uses mixed L 2/L 1 minimization: nonlinear least squares optimization to achieve an optimal fit between the model in state space form and the data, and L 1-minimization of the parameter vector to find the sparsest such model possible. In this approach, in contrast to previous research, the dynamical aspects of the model are taken into account, which gives rise to a nonlinear estimation problem. The set-up allows for the identification of structured or partially sparse models, so that available prior knowledge on interactions can be incorporated. To investigate the potential for applications, the algorithm is tested on artificial gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, D.: Subspace algorithms. In: Proceedings of the 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, pp. 1030–1041 (2003)

    Google Scholar 

  2. Bauer, D.: Asymptotic Properties of Subspace Estimators. Automatica, Special Issue on Data-Based Modeling and System Identification 41(3), 359–376 (2005)

    MATH  Google Scholar 

  3. Bloomfield, P., Steiger, W.L.: Least Absolute Deviations: Theory, Applications, and Algorithms. Birkhäuser, Boston (1983)

    MATH  Google Scholar 

  4. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering. Bioinformatics 16(8), 707–726 (2000)

    Article  Google Scholar 

  5. Dion, J.-M., Commault, C., van der Woude, J.: Generic properties and control of linear structured systems: a survey. Automatica 39, 1125–1144 (2003)

    Article  MATH  Google Scholar 

  6. Fletcher, R.: Practical Methods of Optimization. John Wiley and Sons Ltd., Chichester (1987)

    MATH  Google Scholar 

  7. Fuchs, J.-J.: More on sparse representations in arbitrary bases. In: Proceedings of the 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, pp. 1357–1362 (2003)

    Google Scholar 

  8. Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory IT-50(6), 1341–1344 (2004)

    Article  Google Scholar 

  9. Gray, W.S., Verriest, E.I.: Optimality properties of balanced realizations: Minimum sensitivity. In: Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 124–128. IEEE Computer Society Press, Los Alamitos (1987)

    Chapter  Google Scholar 

  10. Gupta, N.K., Mehra, R.K.: Computational aspects of maximum likelihood estimation and reduction is sensitivity function calculations. IEEE Transactions on Automatic Control AC-19, 774–783 (1974)

    Article  MathSciNet  Google Scholar 

  11. Hannan, E.J., Deistler, M.: The Statistical Theory of Linear Systems. John Wiley and Sons, New York (1988)

    MATH  Google Scholar 

  12. Kitano, H.: Systems Biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  13. Larimore, W.E.: System identification, reduced order filters and modeling via canonical variate analysis. In: Rao, H.S., Dorato, P. (eds.) Proceedings of the 1983 American Control Conference 2, Piscataway, NJ, pp. 445–451 (1983)

    Google Scholar 

  14. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse-engineering of gene regulatory networks. Journal of Theoretical Biology 229, 523–537 (2004)

    Article  MathSciNet  Google Scholar 

  15. Ljung, L.: MATLAB System Identification Toolbox Users Guide, Version 6. The Mathworks (2004)

    Google Scholar 

  16. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  17. Ninness, B., Wills, A., Gibson, S.: The University of Newcastle Identification Toolbox (UNIT). In: Proceedings of the 16th IFAC World Congress, Prague (2005)

    Google Scholar 

  18. van Overschee, P., de Moor, B.: Subspace Identification for Linear Systems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  19. Peeters, R.L.M.: System identification based on Riemannian geometry: theory and algorithms. Tinbergen Institute Research Series, vol. 64. Thesis Publishers, Amsterdam (1994)

    Google Scholar 

  20. Peeters, R.L.M., Westra, R.L.: On the identification of sparse gene regulatory networks. In: Proceedings of the 16th International Symposium on the Mathematical Theory of Networks and Systems, Leuven, Belgium (2004)

    Google Scholar 

  21. Söderström, T.S., Stoica, P.: System Identification. Prentice-Hall, New York (1989)

    MATH  Google Scholar 

  22. Tegnér, J., et al.: Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Science 100(10), 5944–5949 (2003)

    Article  Google Scholar 

  23. Verhaegen, M.: Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica 30, 61–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verriest, E.I., Gray, W.S.: A geometric approach to the minimum sensitivity design problem. SIAM Journal on Control and Optimization 33(3), 863–881 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wills, A., Ninness, B., Gibson, S.: On Gradient-Based Search for Multivariable System Estimates. In: Proceedings of the 16th IFAC World Congress, Prague (2005)

    Google Scholar 

  26. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Science 99(9), 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl Tuyls Ronald Westra Yvan Saeys Ann Nowé

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Peeters, R.L.M., Zeemering, S. (2007). Sparse Gene Regulatory Network Identification. In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds) Knowledge Discovery and Emergent Complexity in Bioinformatics. KDECB 2006. Lecture Notes in Computer Science(), vol 4366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71037-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71037-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71036-3

  • Online ISBN: 978-3-540-71037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics