Skip to main content

T Cell Regulatory Plasmacytoid Dendritic Cells Expressing Indoleamine 2,3 Dioxygenase

  • Chapter
Dendritic Cells

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 188))

Abstract

Mature dendritic cells (DCs) are potent stimulators of T cells that recognize antigens presented by the DCs. In this chapter we describe mature DCs that suppress T cell responses to antigens they present due to expression of the intracel-lular enzyme indoleamine 2,3 dioxygenase (IDO). IDO-competent DCs are a subset of plasmacytoid DCs that can be induced to express IDO under certain inflammatory conditions in humans and mice. Though rare, IDO-expressing DCs acquire potent T cell suppressor activity that may predominate over the T cell stimulatory functions of all other antigen-presenting cells in physiologic environments due in part, to cooperation with regulatory T cells. Thus, IDO-expressing DCs are critical regulators of adaptive immunity that contribute to a wide range of inflammatory disease processes. As such, manipulating IDO expression in DCs using IDO inhibitors or IDO inducers offers considerable opportunities to improve immunotherapies in a range of clinically-significant disease syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel K, Wang Y et al (2005) Deoxycytidyl-deoxyguanosine oligonucleotide classes A, B, and C induce distinct cytokine gene expression patterns in rhesus monkey peripheral blood mononu-clear cells and distinct alpha interferon responses in TLR9-expressing rhesus monkey plasma-cytoid dendritic cells. Clin Diagn Lab Immunol 12:606–621

    Article  PubMed  CAS  Google Scholar 

  • Agaugue S, Perrin-Cocon L et al (2006) 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J Immunol 177:2061–2071

    PubMed  CAS  Google Scholar 

  • Asselin-Paturel C, Boonstra A et al (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Asselin-Paturel C, Brizard G et al (2003) Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171:6466–6477

    PubMed  CAS  Google Scholar 

  • Baban B, Hansen AM et al (2005) A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17:909–919

    Article  PubMed  CAS  Google Scholar 

  • Ball HJ, Sanchez-Perez A et al (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213

    Article  PubMed  CAS  Google Scholar 

  • Banerjee T, Duhadaway JB et al (2007) A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene 27: 2851–2857

    Article  PubMed  CAS  Google Scholar 

  • Basu GD, Tinder TL et al (2006) Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol 177:2391–2402

    PubMed  CAS  Google Scholar 

  • Blackwell SE, Krieg AM (2003) CpG-A-induced monocyte IFN-gamma-inducible protein-10 production is regulated by plasmacytoid dendritic cell-derived IFN-alpha. J Immunol 170: 4061–4068

    PubMed  CAS  Google Scholar 

  • Boasso A, Herbeuval JP et al (2005) Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4 + T cells. Blood 105:1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Boasso A, Herbeuval JP et al (2007) HIV inhibits CD4 + T-cell proliferation by inducing in-doleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood 109:3351–3359

    Article  PubMed  CAS  Google Scholar 

  • Boasso A, Shearer GM (2007) How does indoleamine 2,3-dioxygenase contribute to HIV-mediated immune dysregulation. Curr Drug Metab 8:217–223

    Article  PubMed  CAS  Google Scholar 

  • Booth JS, Nichani AK et al (2007) Innate immune responses induced by classes of CpG oligodeoxynucleotides in ovine lymph node and blood mononuclear cells. Vet Immunol Im-munopathol 115:24–34

    Article  CAS  Google Scholar 

  • Brastianos HC, Vottero E et al (2006) Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J Am Chem Soc 128:16046–16047

    Article  PubMed  CAS  Google Scholar 

  • Braun D, Longman RS et al (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381

    Article  PubMed  CAS  Google Scholar 

  • Burke F, Knowles RG et al (1995) The role of indoleamine 2,3-dioxygenase in the anti-tumour activity of human interferon-gamma in vivo. Int J Cancer 60:115–122

    Article  PubMed  CAS  Google Scholar 

  • Cady SG, Sono M (1991) 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryp-tophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys 291:326–333

    Article  PubMed  CAS  Google Scholar 

  • Chelbi-Alix MK, Wietzerbin J (2007) Interferon, a growing cytokine family: 50 years of interferon research. Biochimie 89:713–718

    Article  PubMed  CAS  Google Scholar 

  • Cravens PD, Hayashida K et al (2007) Human peripheral blood dendritic cells and monocyte subsets display similar chemokine receptor expression profiles with differential migratory responses. Scand J Immunol 65:514–524

    Article  PubMed  CAS  Google Scholar 

  • Dai W, Gupta SL (1990) Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J Biol Chem 265:19871–19877

    PubMed  CAS  Google Scholar 

  • Decker T, Muller M et al (2005) The Yin and Yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5:675–687

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Qiu H et al (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6:269–279

    Article  PubMed  CAS  Google Scholar 

  • Duluc D, Delneste Y et al (2007) Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 110:4319–4330

    Article  PubMed  CAS  Google Scholar 

  • Dzionek A, Fuchs A et al (2000) BDCA-2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic Cells in Human Peripheral Blood. J Immunol 165:6037–6046

    PubMed  CAS  Google Scholar 

  • Fallarino F, Asselin-Paturel C et al (2004) Murine plasmacytoid dendritic cells initiate the im-munosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173:3748–3754

    PubMed  CAS  Google Scholar 

  • Fallarino F, Gizzi S et al (2007) Tryptophan catabolism in IDO + plasmacytoid dendritic cells. Curr Drug Metab 8:209–216

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U et al (2002a) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    Article  CAS  Google Scholar 

  • Fallarino F, Vacca C et al (2002b) Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells. Int Immunol 14:65–68

    Article  CAS  Google Scholar 

  • Fallarino F, Grohmann U et al (2006) the combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor {zeta}-chain and induce a regulatory phenotype in naive T cells. J Immunol 176:6752–6761

    PubMed  CAS  Google Scholar 

  • Fallarino F, Orabona C et al (2005) Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int Immunol 17:1429–1438

    Article  PubMed  CAS  Google Scholar 

  • Finger EB, Bluestone JA (2002) When ligand becomes receptor[—]tolerance via B7 signaling on DCs. Nat Immunol 3:1056–1057

    Article  PubMed  CAS  Google Scholar 

  • Friberg M, Jennings R et al (2002) Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 101:151–155

    Article  PubMed  CAS  Google Scholar 

  • Frumento G, Rotondo R et al (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468

    Article  PubMed  CAS  Google Scholar 

  • Fujigaki H, Saito K et al (2006) Nitration and inactivation of IDO by peroxynitrite. J Immunol 176:372–379

    PubMed  CAS  Google Scholar 

  • Furset G, Floisand Y et al (2007) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 123:263–271

    PubMed  Google Scholar 

  • Gaspari P, Banerjee T et al (2006) Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J Med Chem 49:684–692

    Article  PubMed  CAS  Google Scholar 

  • Grage-Griebenow E, Loseke S et al (2007) Anti-BDCA-4 (neuropilin-1) antibody can suppress virus-induced IFN-alpha production of plasmacytoid dendritic cells. Immunol Cell Biol 85:383–390

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Bianchi R et al (2003) Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation. J Immunol 171:2581–2587

    PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F et al (2001a) IL-6 inhibits the tolerogenic function of CD8 alpha + dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol 167:708–714

    CAS  Google Scholar 

  • Grohmann U, Fallarino F et al (2001b) CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 166:277–283

    CAS  Google Scholar 

  • Grohmann U, Orabona C et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Grohmann U, Volpi C et al (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586

    Article  PubMed  CAS  Google Scholar 

  • Guillonneau C, Hill M et al (2007) CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J Clin Invest 117:1096– 1106

    Article  PubMed  CAS  Google Scholar 

  • Hackstein H, Thomson AW (2004) Dendritic cells: emerging pharmacological targets of immuno-suppressive drugs. Nat Rev Immunol 4:24–34

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Beck L et al (2004) Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J Clin Invest 114:270–279

    PubMed  CAS  Google Scholar 

  • Hayashi T, Mo JH et al (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104:18619–18624

    Article  PubMed  CAS  Google Scholar 

  • Hilkens CM, Schlaak JF et al (2003) Differential responses to IFN-alpha subtypes in human T cells and dendritic cells. J Immunol 171:5255–5263

    PubMed  CAS  Google Scholar 

  • Hill JA, Feuerer M et al (2007a) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27:786–800

    CAS  Google Scholar 

  • Hill M, Tanguy-Royer S et al (2007b) IDO expands human CD4 + CD25high regulatory T cells by promoting maturation of LPS-treated dendritic cells. Eur J Immunol 37:3054–3062

    Article  CAS  Google Scholar 

  • Hochrein H, O'Keeffe M et al (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Yanai H et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777

    Article  PubMed  CAS  Google Scholar 

  • Hou DY, Muller AJ et al (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67: 792–801

    Article  PubMed  CAS  Google Scholar 

  • Hunt JS (2006) Stranger in a strange land. Immunol Rev 213:36–47

    Article  PubMed  CAS  Google Scholar 

  • Hwu P, Du MX et al (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    PubMed  CAS  Google Scholar 

  • Janke M, Witsch EJ et al (2006) Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 118:353–360

    Article  PubMed  CAS  Google Scholar 

  • Jasperson LK, Bucher C et al (2007) Indoleamine 2,3-dioxygenase is a critical regulator of acute GVHD lethality. Blood 111:3257–3265

    Article  PubMed  CAS  Google Scholar 

  • Jeong YI, Jung ID et al (2007) (−)-Epigallocatechin gallate suppresses indoleamine 2,3-dioxygenase expression in murine dendritic cells: evidences for the COX-2 and STAT1 as potential targets. Biochem Biophys Res Commun 354:1004–1009

    Article  PubMed  CAS  Google Scholar 

  • Johnson LM, Scott P (2007) STAT1 expression in dendritic cells, but not T cells, is required for immunity to Leishmania major. J Immunol 178:7259–7266

    PubMed  CAS  Google Scholar 

  • Jung ID, Lee CM et al (2007) Differential regulation of indoleamine 2,3-dioxygenase by lipopolysaccharide and interferon gamma in murine bone marrow derived dendritic cells. FEBS Lett 581:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Keith IM, Brownfield MS (1985) Evidence for presence of kynurenine in lung and brain of neonate hamsters. Histochemistry 83:465–471

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Jeong YI et al (2007) p-Coumaric acid inhibits indoleamine 2, 3-dioxygenase expression in murine dendritic cells. Int Immunopharmacol 7:805–815

    Article  PubMed  CAS  Google Scholar 

  • Lee GK, Park HJ et al (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Jeong YI et al (2007) Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem Pharmacol 73:1412–1421

    Article  PubMed  CAS  Google Scholar 

  • Lee JR, Dalton RR et al (2003) Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 83:1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Pabarcus MK et al (2007) Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: Translational control by a hepatic eIF2{alpha} kinase, the heme-regulated inhibitor (HRI). J Pharmacol Exp Ther 33:979–989

    Article  CAS  Google Scholar 

  • Liu H, Xue ZT et al (2007) Low dose Zebularine treatment enhances immunogenicity of tumor cells. Cancer Lett 257:107–115

    Article  PubMed  CAS  Google Scholar 

  • Lob S, Konigsrainer A et al (2007) Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111:2152–2154

    Article  PubMed  CAS  Google Scholar 

  • Mahnke K, Johnson TS et al (2007) Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J Dermatol Sci 46:159–167

    Article  PubMed  CAS  Google Scholar 

  • Manlapat AK, Kahler DJ et al (2007) Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19 + dendritic cells. Eur J Immunol 37: 1064–1071

    Article  PubMed  CAS  Google Scholar 

  • Martinson JA, Tenorio AR et al (2007) Impact of class A, B and C CpG-oligodeoxynucleotides on in vitro activation of innate immune cells in human immunodeficiency virus-1 infected individuals. Immunology 120:526–535

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 20:469–473

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Baban B et al (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171:1652–1655

    PubMed  CAS  Google Scholar 

  • Mellor AL, Chandler P et al (2004) Specific subsets of murine dendritic cells acquire potent T cell regulatory functions following CTLA4-mediated induction of indoleamine 2,3 dioxygenase. Int Immunol 16:1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Mellor AL, Baban B et al (2005) Cutting edge: CpG oligonucleotides induce splenic CD19 + dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol 175:5601–5605

    PubMed  CAS  Google Scholar 

  • Metz R, Duhadaway JB et al (2007) Novel Tryptophan Catabolic Enzyme IDO2 Is the Preferred Biochemical Target of the Antitumor Indoleamine 2,3-Dioxygenase Inhibitory Compound D-1-Methyl-Tryptophan. Cancer Res 67:7082–7087

    Article  PubMed  CAS  Google Scholar 

  • Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol advanced online publication 7:610–621

    CAS  Google Scholar 

  • Mrass P, Weninger W (2006) Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol Rev 213:195–212

    Article  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2006) The tumor-draining lymph node as an immune-privileged site. Immunol Rev 213:146–158

    Article  PubMed  Google Scholar 

  • Munn DH, Pressey J et al (1996) Selective activation-induced apoptosis of peripheral T cells imposed by macrophages. A potential mechanism of antigen-specific peripheral lymphocyte deletion. J Immunol 156:523–532

    PubMed  CAS  Google Scholar 

  • Munn DH, Zhou M et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Shafizadeh E et al (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189:1363–1372

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD et al (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD et al (2004a) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–90

    CAS  Google Scholar 

  • Munn DH, Sharma MD et al (2004b) Ligation of B7-1/B7-2 by human CD4 + T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172:4100–4110

    CAS  Google Scholar 

  • Munn DH, Mellor AL et al (2005a) Dendritic cells have the option to express IDO-mediated suppression or not. Blood 105:2618

    Article  CAS  Google Scholar 

  • Munn DH, Sharma MD et al (2005b) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    Article  CAS  Google Scholar 

  • Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61:519–525

    Article  PubMed  CAS  Google Scholar 

  • Nair MP, Schwartz SA et al (2004) Drug abuse and neuropathogenesis of HIV infection: role of DC-SIGN and IDO. J Neuroimmunol 157:56–60

    Article  PubMed  CAS  Google Scholar 

  • Orabona C, Belladonna ML et al (2005a) Cutting edge: silencing suppressor of cytokine signaling 3 expression in dendritic cells turns CD28-Ig from immune adjuvant to suppressant. J Immunol 174:6582–6586

    CAS  Google Scholar 

  • Orabona C, Tomasello E et al (2005b) Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. Eur J Immunol 35:3111–3118

    Article  CAS  Google Scholar 

  • Ou X, Cai S et al (2007) Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J Cancer Res Clin Oncol 134:525–533

    Article  PubMed  CAS  Google Scholar 

  • Paguirigan AM, Byrne GI et al (1994) Cytokine-mediated indoleamine 2,3-dioxygenase induction in response to Chlamydia infection in human macrophage cultures. Infect Immun 62: 1131–1136

    PubMed  CAS  Google Scholar 

  • Patterson S, Rae A et al (2001) Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. J Virol 75:6710–6713

    Article  PubMed  CAS  Google Scholar 

  • Peggs KS, Quezada SA et al (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18:206–213

    Article  PubMed  CAS  Google Scholar 

  • Penberthy WT (2007) Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Curr Drug Metab 8:245–266

    Article  PubMed  CAS  Google Scholar 

  • Pereira A, Vottero E et al (2006) Indoleamine 2,3-dioxygenase inhibitors from the Northeastern Pacific Marine Hydroid Garveia annulata. J Nat Prod 69:1496–1499

    Article  PubMed  CAS  Google Scholar 

  • Pestka S, Krause CD et al (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32

    Article  PubMed  CAS  Google Scholar 

  • Peters N, Sacks D (2006) Immune privilege in sites of chronic infection: leishmania and regulatory T cells. Immunol Rev 213:159–179

    Article  PubMed  CAS  Google Scholar 

  • Peterson AC, Migawa MT, Martin MJ, Hamaker LK, Czerwinski KM, Zhang W, Arend RA, Fisette PL, Ozaki Y, Will JA, Brown RR, Cook JM (1994) Evaluation of functionalized tryptophan derivatives and related compounds as competitive inhibitors of indoleamine 2,3-dioxygenase. Med Chem Res:531–544

    Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  PubMed  CAS  Google Scholar 

  • Platten M, Ho PP et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryp-tophan metabolite. Science 310:850–855

    Article  PubMed  CAS  Google Scholar 

  • Poljak A, Grant R et al (2006) Inhibition of indoleamine 2,3 dioxygenase activity by H2O2. Arch Biochem Biophys 450:9–19

    Article  PubMed  CAS  Google Scholar 

  • Popov A, Abdullah Z et al (2006) Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest 116: 3160–3170

    Article  PubMed  CAS  Google Scholar 

  • Puthalakath H, O'Reilly LA et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Sun Y et al (2007) 35: Histone deacetylase inhibitors induce indoleamine 2, 3-dioxygenase and modulate dendritic cell functions. Biol Blood Marrow Transplant 13: 15–16

    Article  Google Scholar 

  • Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483

    Article  CAS  Google Scholar 

  • Roberts TL, Sweet MJ et al (2005) Cutting Edge: Species-Specific TLR9-Mediated Recognition of CpG and Non-CpG Phosphorothioate-Modified Oligonucleotides. J Immunol 174:605–608

    PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG et al (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25 + CD4 + regulatory T cells in im-munological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  • Sakurai K, Zou JP et al (2002) Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 129:186–196

    Article  PubMed  CAS  Google Scholar 

  • Salter M, Hazelwood R et al (1995) The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat. Biochem Pharmacol 49: 1435–1442

    Article  PubMed  CAS  Google Scholar 

  • Samelson-Jones BJ, Yeh SR (2006) Interactions between nitric oxide and indoleamine 2,3-dioxy-genase. Biochemistry 45:8527–8538

    Article  PubMed  CAS  Google Scholar 

  • Saxena V, Ondr JK et al (2007) The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse. J Immunol 179:5041–5053

    PubMed  CAS  Google Scholar 

  • Seymour RL, Ganapathy V et al (2006) A high-affinity, tryptophan-selective amino acid transport system in human macrophages. J Leukoc Biol 80:1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570– 2582

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM, DiPaolo RA et al (2006) The lifestyle of naturally occurring CD4 + CD25 + Foxp3 + regulatory T cells. Immunol Rev 212:60–73

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30

    Article  PubMed  CAS  Google Scholar 

  • Sotero-Esteva WD, Wolfe D et al (2000) An indoleamine 2,3-dioxygenase-negative mutant is defective in stat1 DNA binding: differential response to IFN-gamma and IFN-alpha. J Interferon Cytokine Res 20:623–632

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D et al (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987:15–25

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto H, Oda S et al (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA 103:2611–2616

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. Faseb J 5:2516–2522

    PubMed  CAS  Google Scholar 

  • Terness P, Bauer TM et al (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    Article  PubMed  CAS  Google Scholar 

  • Terness P, Chuang JJ et al (2005) Regulation of human auto- and alloreactive T cells by in-doleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105:2480–2486

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Stocker R (1999) Antioxidant activities and redox regulation of interferon-gamma-induced tryptophan metabolism in human monocytes and macrophages. Adv Exp Med Biol 467:541–552

    PubMed  CAS  Google Scholar 

  • Thomas SR, Mohr D et al (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 269:14457–14464

    PubMed  CAS  Google Scholar 

  • Thomas SR, Salahifar H et al (2001) Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarba-mate. J Immunol 166:6332–6340

    PubMed  CAS  Google Scholar 

  • Thomas SR, Terentis AC et al (2007) Post-translational regulation of human indoleamine 2,3-dioxygenase activity by nitric oxide. J Biol Chem 282:23778–23787

    Article  PubMed  CAS  Google Scholar 

  • Thornton AM, Piccirillo CA et al (2004) Activation requirements for the induction of CD4 + CD25 + T cell suppressor function. Eur J Immunol 34:366–376

    Article  PubMed  CAS  Google Scholar 

  • Travers MT, Gow IF et al (2004) Indoleamine 2,3-dioxygenase activity and L-tryptophan transport in human breast cancer cells. Biochim Biophys Acta 1661:106–112

    Article  PubMed  CAS  Google Scholar 

  • van Boxel-Dezaire AH, Rani MR et al (2006) Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25:361–372

    Article  PubMed  CAS  Google Scholar 

  • Vollmer J, Jurk M et al (2004a) CpG oligodeoxynucleotides stimulate IFN-gamma-inducible protein-10 production in human B cells. J Endotoxin Res 10:431–438

    Google Scholar 

  • Vollmer J, Weeratna R et al (2004b) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  CAS  Google Scholar 

  • von Bergwelt-Baildon MS, Popov A et al (2006) CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Article  CAS  Google Scholar 

  • Vottero E, Balgi A et al (2006) Inhibitors of human indoleamine 2,3-dioxygenase identified with a target-based screen in yeast. Biotechnol J 1:282–288

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Jiang HY et al (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  PubMed  CAS  Google Scholar 

  • Wingender G, Garbi N et al (2006) Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 36:12–20

    Article  PubMed  CAS  Google Scholar 

  • Wirleitner B, Neurauter G et al (2004) Down-regulatory effect of N-chlorotaurine on tryptophan degradation and neopterin production in human PBMC. Immunol Lett 93:143–149

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Hayaishi O (1967) Tryptophan Pyrrolase of Rabbit Intestine. d- and l-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 242:5260–5266

    PubMed  CAS  Google Scholar 

  • Yasui H, Takai K et al (1986) Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc Natl Acad Sci USA 83:6622–6626

    Article  PubMed  CAS  Google Scholar 

  • Youn J, Lee KH et al (2003) Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. J Rheumatol 30:1203–1207

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Mellor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kahler, D.J., Mellor, A.L. (2009). T Cell Regulatory Plasmacytoid Dendritic Cells Expressing Indoleamine 2,3 Dioxygenase. In: Lombardi, G., Riffo-Vasquez, Y. (eds) Dendritic Cells. Handbook of Experimental Pharmacology, vol 188. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71029-5_8

Download citation

Publish with us

Policies and ethics