Skip to main content

BRCA2: safeguarding the genome through homologous recombination

  • Chapter
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Germline mutations in the tumor suppressor gene BRCA2 predispose individuals to breast, ovarian, and other cancers. In recent years, the BRCA2 protein has been recognized to have an important function in homologous recombination, a key pathway in mammalian cells for repairing spontaneous and induced DNA lesions and, thus, for maintaining genomic integrity. Loss of BRCA2 leads to embryonic death in mice, but is compatible with cell survival in adult somatic cells and tumor proliferation. This review summarizes recent advances in our understanding of BRCA2 from several perspectives, especially with regard to its broad evolutionary conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alter BP, Rosenberg PS, Brody LC (2006) Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet

    Google Scholar 

  • Bennett LM, McAllister KA, Blackshear PE, Malphurs J, Goulding G, Collins NK, Ward T, Bunch DO, Eddy EM, Davis BJ, Wiseman RW (2000) BRCA2-null embryonic sur-vival is prolonged on the BALB/c genetic background. Mol Carcinog 28:174–183

    Article  CAS  PubMed  Google Scholar 

  • Bignell G, Micklem G, Stratton MR, Ashworth A, Wooster R (1997) The BRC repeats are conserved in mammalian BRCA2 proteins. Hum Mol Genet 6:53–58

    Article  CAS  PubMed  Google Scholar 

  • Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14:36–42

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Blomberg N, Nilges M (1996) Internal repeats in the BRCA2 protein sequence. Nat Genet 13:22–23

    Article  CAS  PubMed  Google Scholar 

  • Brodie SG, Xu X, Qiao W, Li WM, Cao L, Deng CX (2001) Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Onco-gene 20:7514–7523

    Article  CAS  Google Scholar 

  • Chen CF, Chen PL, Zhong Q, Sharp ZD, Lee WH (1999) Expression of BRC repeats in breast cancer cells disrupts the BRCA2-Rad51 complex and leads to radiation hypersensitivity and loss of G(2)/M checkpoint control. J Biol Chem 274:32931–32935

    Article  CAS  PubMed  Google Scholar 

  • Chen PL, Chen CF, Chen Y, Xiao J, Sharp ZD, Lee WH (1998) The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA 95:5287–5292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung AM, Elia A, Tsao MS, Done S, Wagner KU, Hennighausen L, Hakem R, Mak TW (2004) Brca2 deficiency does not impair mammary epithelium development but pro-motes mammary adenocarcinoma formation in p53(+/-) mutant mice. Cancer Res 64:1959–1965

    Article  CAS  PubMed  Google Scholar 

  • Cheung AM, Hande MP, Jalali F, Tsao MS, Skinnider B, Hirao A, McPherson JP, Karaskova J, Suzuki A, Wakeham A, You-Ten A, Elia A, Squire J, Bristow R, Hakem R, Mak TW (2002) Loss of Brca2 and p53 synergistically promotes genomic instabil-ity and deregulation of T-cell apoptosis. Cancer Res 62:6194–6204

    CAS  PubMed  Google Scholar 

  • Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF, et al. (1995) Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12-13. Oncogene 10:1673–1675

    CAS  PubMed  Google Scholar 

  • Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VL, Ashworth A (1997) Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat Genet 17:423–430

    Article  CAS  PubMed  Google Scholar 

  • Cressman VL, Backlund DC, Hicks EM, Gowen LC, Godfrey V, Koller BH (1999) Mammary tumor formation in p53-and BRCA1-deficient mice. Cell Growth Differ 10:1–10

    CAS  PubMed  Google Scholar 

  • Cromie GA, Leach DR (2000) Control of crossing over. Mol Cell 6:815–826

    Article  CAS  PubMed  Google Scholar 

  • Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7:273–282

    Article  CAS  PubMed  Google Scholar 

  • Donoho G, Brenneman MA, Cui TX, Donoviel D, Vogel H, Goodwin EH, Chen DJ, Hasty P (2003) Deletion of Brca2 exon 27 causes hypersensitivity to DNA crosslinks, chromosomal instability, and reduced life span in mice. Genes Chromosomes Cancer 36:317–331

    Article  CAS  PubMed  Google Scholar 

  • Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC (2005) CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434:598–604

    Article  CAS  PubMed  Google Scholar 

  • Featherstone C, Jackson SP (1999) DNA double-strand break repair. Curr Biol 9:R759–761

    Article  CAS  PubMed  Google Scholar 

  • Freie B, Li X, Ciccone SL, Nawa K, Cooper S, Vogelweid C, Schantz L, Haneline LS, Orazi A, Broxmeyer HE, Lee SH, Clapp DW (2003) Fanconi anemia type C and p53 cooperate in apoptosis and tumorigenesis. Blood 102:4146–4152

    Article  CAS  PubMed  Google Scholar 

  • Friedman LS, Thistlethwaite FC, Patel KJ, Yu VP, Lee H, Venkitaraman AR, Abel KJ, Carlton MB, Hunter SM, Colledge WH, Evans MJ, Ponder BA (1998) Thymic lymphomas in mice with a truncating mutation in Brca2. Cancer Res 58:1338–1343

    CAS  PubMed  Google Scholar 

  • Funakoshi M, Li X, Velichutina I, Hochstrasser M, Kobayashi H (2004) Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regu-latory particle that enhances proteasome stability. J Cell Sci 117:6447–6454

    Article  CAS  PubMed  Google Scholar 

  • Galkin VE, Esashi F, Yu X, Yang S, West SC, Egelman EH (2005) BRCA2 BRC motifs bind RAD51-DNA filaments. Proc Natl Acad Sci USA 102:8537–8542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gudmundsdottir K, Lord CJ, Witt E, Tutt AN, Ashworth A (2004) DSS1 is required for RAD51 focus formation and genomic stability in mammalian cells. EMBO Rep 5:989–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatanaka A, Yamazoe M, Sale JE, Takata M, Yamamoto K, Kitao H, Sonoda E, Kikuchi K, Yonetani Y, Takeda S (2005) Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol Cell Biol 25:1124–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hay T, Patrick T, Winton D, Sansom OJ, Clarke AR (2005) Brca2 deficiency in the murine small intestine sensitizes to p53-dependent apoptosis and leads to the spontaneous de-letion of stem cells. Oncogene 24:3842–3846

    Article  CAS  PubMed  Google Scholar 

  • Houghtaling S, Granville L, Akkari Y, Torimaru Y, Olson S, Finegold M, Grompe M (2005) Heterozygosity for p53 (Trp53+/-) accelerates epithelial tumor formation in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Cancer Res 65:85–91

    CAS  PubMed  Google Scholar 

  • Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD (2002) Biallelic inacti-vation of BRCA2 in Fanconi anemia. Science 297:606–609

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cat-taneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, de Winter JP, Ashworth A, Jones NJ, Mathew CG (2004) Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 13:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Witt E, Huber PA, Medhurst AL, Ashworth A, Mathew CG (2003) Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 12:2503–2510

    Article  CAS  PubMed  Google Scholar 

  • Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993

    Article  CAS  PubMed  Google Scholar 

  • Johnson RD, Jasin M (2000) Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 19:3398–3407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  • Kennedy RD, D’Andrea AD (2005) The Fanconi anemia/BRCA pathway: new faces in the crowd. Genes Dev 19:2925–2940

    Article  CAS  PubMed  Google Scholar 

  • Kojic M, Kostrub CF, Buchman AR, Holloman WK (2002) BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 10:683–691

    Article  CAS  PubMed  Google Scholar 

  • Kojic M, Yang H, Kostrub CF, Pavletich NP, Holloman WK (2003) The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 12:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Kojic M, Zhou Q, Lisby M, Holloman WK (2005) Brh2-Dss1 interplay enables properly controlled recombination in Ustilago maydis. Mol Cell Biol 25:2547–2557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kraakman-van der Zwet M, Overkamp WJ, van Lange RE, Essers J, van Duijn-Goedhart A, Wiggers I, Swaminathan S, van Buul PP, Errami A, Tan RT, Jaspers NG, Sharan SK, Kanaar R, Zdzienicka MZ (2002) Brca2 (XRCC11) deficiency results in radiore-sistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol 22:669–679

    Article  Google Scholar 

  • Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Bura-towski S, Emili A, Greenblatt JF (2004) Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Daniels MJ, Venkitaraman AR (2004) Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 23:865–872

    Article  CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zou C, Bai Y, Wazer DE, Band V, Gao Q (2006) DSS1 is required for the stability of BRCA2. Oncogene 25:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Lim DS, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin HR, Ting NS, Qin J, Lee WH (2003) M phase-specific phosphorylation of BRCA2 by Polo-like kinase 1 correlates with the dissociation of the BRCA2-P/CAF complex. J Biol Chem 278:35979–35987

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yuan Y, Huan J, Shen Z (2001) Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene 20:336–345

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Guo X, Meng X, Liu J, Allen C, Wray J, Nickoloff JA, Shen Z (2005) The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair. Mol Cell Biol 25:1949–1957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11:1226–1241

    Article  CAS  PubMed  Google Scholar 

  • Ludwig T, Fisher P, Murty V, Efstratiadis A (2001) Development of mammary adenocarci-nomas by tissue-specific knockout of Brca2 in mice. Oncogene 20:3937–3948

    Article  CAS  PubMed  Google Scholar 

  • Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A (1999) Inter-action between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol 19:4633–4642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin JS, Winkelmann N, Petalcorin MI, McIlwraith MJ, Boulton SJ (2005) RAD-51-dependent and-independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol 25:3127–3139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAllister KA, Bennett LM, Houle CD, Ward T, Malphurs J, Collins NK, Cachafeiro C, Haseman J, Goulding EH, Bunch D, Eddy EM, Davis BJ, Wiseman RW (2002) Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brca2 gene. Cancer Res 62:990–994

    CAS  PubMed  Google Scholar 

  • McAllister KA, Haugen-Strano A, Hagevik S, Brownlee HA, Collins NK, Futreal PA, Bennett LM, Wiseman RW (1997) Characterization of the rat and mouse homologues of the BRCA2 breast cancer susceptibility gene. Cancer Res 57:3121–3125

    CAS  PubMed  Google Scholar 

  • Mizuta R, LaSalle JM, Cheng HL, Shinohara A, Ogawa H, Copeland N, Jenkins NA, La-lande M, Alt FW (1997) RAB22 and RAB163/mouse BRCA2: proteins that specifi-cally interact with the RAD51 protein. Proc Natl Acad Sci USA 94:6927–6932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moynahan ME (2002) The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene 21:8994–9007

    Article  CAS  PubMed  Google Scholar 

  • Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511–518

    Article  CAS  PubMed  Google Scholar 

  • Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D’Andrea AD, Wang ZQ, Jasin M (2005) Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102:1110–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Na-ture 420:287–293

    CAS  Google Scholar 

  • Petalcorin MI, Sandall J, Wigley DB, Boulton SJ (2006) CeBRC-2 Stimulates D-loop formation by RAD-51 and promotes DNA single-strand annealing. J Mol Biol 361:231–242

    Article  CAS  PubMed  Google Scholar 

  • Saeki H, Siaud N, Christ N, Wiegant WW, van Buul PP, Han M, Zdzienicka MZ, Stark JM, Jasin M (2006) Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc Natl Acad Sci USA 103:8768–8773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, Sung P (2006) Recombination media-tor and RAD51 targeting activities of a human BRCA2 polypeptide. J Biol Chem 281:11649–11657

    Article  Google Scholar 

  • Sarkisian CJ, Master SR, Huber LJ, Ha SI, Chodosh LA (2001) Analysis of murine Brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals. J Biol Chem 276:37640–37648

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA (2004) BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol 24:7444–7455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scully R, Livingston DM (2000) In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408:429–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharan SK, Bradley A (1997) Murine Brca2: sequence, map position, and expression pattern. Genomics 40:234–241

    Article  CAS  PubMed  Google Scholar 

  • Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A (1997) Embryonic lethality and radiation hypersensitivity medi-ated by Rad51 in mice lacking Brca2. Nature 386:804–810

    Article  CAS  PubMed  Google Scholar 

  • Sharan SK, Pyle A, Coppola V, Babus J, Swaminathan S, Benedict J, Swing D, Martin BK, Tessarollo L, Evans JP, Flaws JA, Handel MA (2004) BRCA2 deficiency in mice leads to meiotic impairment and infertility. Development 131:131–142

    Article  CAS  PubMed  Google Scholar 

  • Shin S, Verma IM (2003) BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci USA 100:7201–7206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siaud N, Dray E, Gy I, Gerard E, Takvorian N, Doutriaux MP (2004) Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1. EMBO J 23:1392–1401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spain BH, Larson CJ, Shihabuddin LS, Gage FH, Verma IM (1999) Truncated BRCA2 is cytoplasmic: implications for cancer-linked mutations. Proc Natl Acad Sci USA 96:13920–13925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M (2002) ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem 277:20185–20194

    Article  CAS  PubMed  Google Scholar 

  • Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–9316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11:1242–1252

    Article  CAS  PubMed  Google Scholar 

  • Takata M, Tachiiri S, Fujimori A, Thompson LH, Miki Y, Hiraoka M, Takeda S, Yamazoe M (2002) Conserved domains in the chicken homologue of BRCA2. Oncogene 21:1130–1134

    Article  CAS  PubMed  Google Scholar 

  • Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhausen S, Merajver S, Thorlacius S, Offit K, Stoppa-Lyonnet D, Belanger C, Bell R, Berry S, Bogden R, Chen Q, Davis T, Dumont M, Frye C, Hattier T, Jammulapati S, Janecki T, Jiang P, Kehrer R, Leblanc JF, Mitchell JT, McArthur-Morrison J, Nguyen K, Peng Y, Samson C, Schroeder M, Snyder SC, Steele L, Stringfellow M, Stroup C, Swedlund B, Swense J, Teng D, Thomas A, Tran T, Tranchant M, Weaver-Feldhaus J, Wong AK, Shizuya H, Eyfjord JE, Cannon-Albright L, Tranchant M, Labrie F, Skolnick MH, Weber B, Kamb A, Goldgar DE (1996) The complete BRCA2 gene and mutations in chromo-some 13q-linked kindreds. Nat Genet 12:333–337

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, MoritaT (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tutt A, Bertwistle D, Valentine J, Gabriel A, Swift S, Ross G, Griffin C, Thacker J, Ashworth A (2001) Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J 20:4704–4716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tutt A, Connor F, Bertwistle D, Kerr P, Peacock J, Ross G, Ashworth A (2003) Cell cycle and genetic background dependence of the effect of loss of BRCA2 on ionizing radia-tion sensitivity. Oncogene 22:2926–2931

    Article  CAS  PubMed  Google Scholar 

  • Tutt AN, van Oostrom CT, Ross GM, van Steeg H, Ashworth A (2002) Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radia-tion. EMBO Rep 3:255–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Andreassen PR, D’Andrea AD (2004) Functional interaction of monoubiquitinated FANCD2 and BRCA2/FANCD1 in chromatin. Mol Cell Biol 24:5850–5862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren M, Lord CJ, Masabanda J, Griffin D, Ashworth A (2003) Phenotypic effects of heterozygosity for a BRCA2 mutation. Hum Mol Genet 12:2645–2656

    Article  CAS  PubMed  Google Scholar 

  • Warren M, Smith A, Partridge N, Masabanda J, Griffin D, Ashworth A (2002) Structural analysis of the chicken BRCA2 gene facilitates identification of functional domains and disease causing mutations. Hum Mol Genet 11:841–851

    Article  CAS  PubMed  Google Scholar 

  • Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL (1997) RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944

    Article  CAS  PubMed  Google Scholar 

  • Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792

    Article  CAS  PubMed  Google Scholar 

  • Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D, et al. (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265:2088–2090

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22:719–729

    Article  CAS  PubMed  Google Scholar 

  • Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, Powell SN (2001) Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA 98:8644–8649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH, Pavletich NP (2002) BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297:1837–1848

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li Q, Fan J, Holloman WK, Pavletich NP (2005) The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature 433:653–657

    Article  CAS  PubMed  Google Scholar 

  • Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY (1999) BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 59:3547–3551

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christ, N., Moynahan, M.E., Jasin, M. (2007). BRCA2: safeguarding the genome through homologous recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_13

Download citation

Publish with us

Policies and ethics