Skip to main content

Genetics of recombination in the model bacterium Escherichia coli

  • Chapter
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

Abstract

Homologous recombination in bacteria was originally discovered as a process that not only exchanges genetic material but also provides one of the major pathways of DNA-damage repair. Homologous exchanges and DNA repair illustrate the dual role of recombination which acts both to promote genetic diversity and to conserve genomic integrity. In this review, we will first describe the genetics of enzymes that act at different steps of the homologous recombination process in Escherichia coli, with an emphasis on the most recent results. We will then describe recent advances in our understanding of the role of homologous recombination during DNA repair. Recombination enzymes act on DNA at single- or double-strand interruptions generated as a result of nucleotide lesions or replication impairment. Although generally they can and often do promote genetic exchange, some recombination enzymes also fulfill various non-recombinogenic important functions, such as the signaling of DNA damage and the remodeling of arrested replication forks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29:319–328

    CAS  PubMed  Google Scholar 

  • Albertini AM, Hofer M, Calos MP, Tlsty TD, Miller JH (1983) Analysis of spontaneous deletions and gene amplification in the lac region of Escherichia coli. Cold Spring Harb Symp Quant Biol 47 Pt 2:841–850

    Google Scholar 

  • Amundsen SK, Smith GR (2003) Interchangeable parts of the Escherichia coli recombination machinery. Cell 112:741–744

    CAS  PubMed  Google Scholar 

  • Baharoglu Z, Petranovic M, Flores MJ, Michel B (2006) RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25:596–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P (2005) DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 58:61–70

    CAS  PubMed  Google Scholar 

  • Bell CE (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol Microbiol 58:358–366

    CAS  PubMed  Google Scholar 

  • Bhattacharya R, Beck DJ (2002) Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions. DNA Repair (Amst) 1:955–966

    CAS  Google Scholar 

  • Bidnenko V, Ehrlich SD, Michel B (2002) Replication fork collapse at replication terminator sequences. EMBO J 21:3898–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bidnenko V, Seigneur M, Penel-Colin M, Bouton MF, Dusko Ehrlich S, Michel B (1999) sbcB sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Mol Microbiol 33:846–857

    CAS  PubMed  Google Scholar 

  • Bierne H, Ehrlich SD, Michel B (1997a) Deletions at stalled replication forks occur by two different pathways. EMBO J 16:3332–3340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bierne H, Michel B (1994) When replication forks stop. Mol Microbiol 13:17–23

    CAS  PubMed  Google Scholar 

  • Bierne H, Seigneur M, Ehrlich SD, Michel B (1997b) uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Mol Microbiol 26:557–567

    CAS  PubMed  Google Scholar 

  • Bierne H, Vilette D, Ehrlich SD, Michel B (1997c) Isolation of a dnaE mutation which enhances RecA-independent homologous recombination in the Escherichia coli chromosome. Mol Microbiol 24:1225–1234

    CAS  PubMed  Google Scholar 

  • Bork JM, Cox MM, Inman RB (2001) The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20:7313–7322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradshaw JS, Kuzminov A (2003) RdgB acts to avoid chromosome fragmentation in Escherichia coli. Mol Microbiol 48:1711–1725

    CAS  PubMed  Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531–537

    CAS  PubMed  Google Scholar 

  • Chow KH, Courcelle J (2004) RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli. J Biol Chem 279:3492–3496

    CAS  PubMed  Google Scholar 

  • Clark AJ, Sandler SJ (1994) Homologous genetic recombination: the pieces begin to fall into place. Crit Rev Microbiol 20:125–142

    CAS  PubMed  Google Scholar 

  • Cohen A, Laban A (1983) Plasmidic recombination in Escherichia coli K-12: the role of recF gene function. Mol Gen Genet 189:471–474

    CAS  PubMed  Google Scholar 

  • Courcelle J, CarswellCrumpton C, Hanawalt PC (1997) recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci USA 94:3714–3719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox JM, Tsodikov OV, Cox MM (2005) Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol 3:e52

    PubMed Central  PubMed  Google Scholar 

  • Cox MM (2003) The bacterial RecA protein as a motor protein. Annu Rev Microbiol 57:551–577

    CAS  PubMed  Google Scholar 

  • Cromie GA, Leach DRF (2000) Control of crossing over. Mol Cell 6:815–826

    CAS  PubMed  Google Scholar 

  • Dalencon E, Petranovic M, Michel B, Noirot P, Aucouturier A, Uzest M, Ehrlich SD (1994) Copy-choice illegitimate DNA recombination revisited. EMBO J 13:2725–2734

    CAS  Google Scholar 

  • Dillingham MS, Spies M, Kowalczykowski SC (2003) RecBCD enzyme is a bipolar DNA helicase. Nature 423:893–897

    CAS  PubMed  Google Scholar 

  • Donaldson JR, Courcelle CT, Courcelle J (2004) RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli. Genetics 166:1631–1640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drees JC, Lusetti SL, Chitteni-Pattu S, Inman RB, Cox MM (2004) A RecA filament capping mechanism for RecX protein. Mol Cell 15:789–798

    CAS  PubMed  Google Scholar 

  • Eggler AL, Lusetti SL, Cox MM (2003) The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 278:16389–16396

    CAS  PubMed  Google Scholar 

  • Fischer W, Haas R (2004) The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J Bacteriol 186:777–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores MJ, Bierne H, Ehrlich SD, Michel B (2001) Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 20:619–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flores MJ, Sanchez N, Michel B (2005) A fork-clearing role for UvrD. Mol Microbiol 57:1664–1675

    CAS  PubMed  Google Scholar 

  • Foster TJ, Lundblad V, Hanley-Way S, Halling SM, Kleckner N (1981) Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23:215–227

    CAS  PubMed  Google Scholar 

  • Foti JJ, Schienda J, Sutera VA Jr, Lovett ST (2005) A bacterial G protein-mediated response to replication arrest. Mol Cell 17:549–560

    CAS  PubMed  Google Scholar 

  • Friedman N, Vardi S, Ronen M, Alon U, Stavans J (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 3:e238

    PubMed Central  PubMed  Google Scholar 

  • Galitski T, Roth JR (1997) Pathways for homologous recombination between chromosomal direct repeats in Salmonella typhimurium. Genetics 146:751–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson FP, Leach DRF, Lloyd RG (1992) Identification of sbcD mutations as cosuppressors of recBC that allow propagation of DNA palindromes in Escherichia-Coli K-12. J Bacteriol 174:1222–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grompone G, Bidnenko V, Ehrlich SD, Michel B (2004a) PriA is essential for viability of the Escherichia coli topoisomerase IV parE10(Ts) mutant. J Bacteriol 186:1197–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grompone G, Ehrlich D, Michel B (2004b) Cells defective for replication restart undergo replication fork reversal. EMBO Rep 5:607–612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grompone G, Ehrlich SD, Michel B (2003) Replication restart in gyrB Escherichia coli mutants. Mol Microbiol 48:845–854

    CAS  PubMed  Google Scholar 

  • Grompone G, Seigneur M, Ehrlich SD, Michel B (2002) Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 44:1331–1339

    CAS  PubMed  Google Scholar 

  • Handa N, Bianco PR, Baskin RJ, Kowalczykowski SC (2005) Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. Mol Cell 17:745–750

    CAS  PubMed  Google Scholar 

  • Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    CAS  PubMed  Google Scholar 

  • Higgins NP, Kato K, Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101:417–425

    CAS  PubMed  Google Scholar 

  • Horiuchi T, Fujimura Y, Nishitani H, Kobayashi T, Hidaka M (1994) DNA replication fork blocked at the Ter site may be an entrance for the RecBCD enzyme into duplex DNA. J Bacteriol 176:4656–4663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivancic-Bace I, Peharec P, Moslavac S, Skrobot N, Salaj-Smic E, Brcic-Kostic K (2003) RecFOR function is required for DNA repair and recombination in a RecA loadingdeficient recB mutant of Escherichia coli. Genetics 163:485–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivancic-Bace I, Salaj-Smic E, Brcic-Kostic K (2005) Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli. J Bacteriol 187:1350–1356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jockovich ME, Myers RS (2001) Nuclease activity is essential for RecBCD recombination in Escherichia coli. Mol Microbiol 41:949–962

    CAS  PubMed  Google Scholar 

  • Kang J, Tavakoli D, Tschumi A, Aras RA, Blaser MJ (2004) Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli. J Bacteriol 186:7704–7713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller KL, OverbeckCarrick TL, Beck DJ (2001) Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and RecFOR pathways of homologous recombination. Mutat Res DNA Repair 486:21–29

    CAS  PubMed  Google Scholar 

  • Khidhir MA, Casaregola S, Holland IB (1985) Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet 199:133–140

    CAS  PubMed  Google Scholar 

  • Kline KA, Sechman EV, Skaar EP, Seifert HS (2003) Recombination, repair and replication in the pathogenic Neisseriae: the 3 R’s of molecular genetics of two humanspecific bacterial pathogens. Mol Microbiol 50:3–13

    CAS  PubMed  Google Scholar 

  • Kline KA, Seifert HS (2005a) Mutation of the priA gene of Neisseria gonorrhoeae affects DNA transformation and DNA repair. J Bacteriol 187:5347–5355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kline KA, Seifert HS (2005b) Role of the Rep helicase gene in homologous recombination in Neisseria gonorrhoeae. J Bacteriol 187:2903–2907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knezevic-Vukcevic J, Simic D (1991) RecBC promoted repair of bleomycin damage in Escherichia coli. Biochimie 73:497–500

    CAS  PubMed  Google Scholar 

  • Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kogoma T, Cadwell GW, Barnard KG, Asai T (1996) The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 178:1258–1264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolodner R, Fishel RA, Howard M (1985) Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163:1060–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konrad EB (1977) Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications. J Bacteriol 130:167–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzminova EA, Kuzminov A (2004) Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 51:1279–1295

    CAS  PubMed  Google Scholar 

  • Kouzminova EA, Kuzminov A (2006) Fragmentation of replicating chromosomes triggered by uracil in DNA. J Mol Biol 355:20–33

    CAS  PubMed  Google Scholar 

  • Kowalczykowski SC (1991) Biochemistry of genetic recombination — energetics and mechanism of DNA strand exchange. Ann Rev Biophysics Biophysic Chem 20:539–575

    CAS  Google Scholar 

  • Kuzminov A (1995) Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384

    CAS  PubMed  Google Scholar 

  • Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause doublestrand breaks. Proc Natl Acad Sci USA 98:8241–8246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW (2004) Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 23:2029–2038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leiros I, Timmins J, Hall DR, McSweeney S (2005) Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 24:906–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lesterlin C, Barre FX, Cornet F (2004) Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 54:1151–1160

    CAS  PubMed  Google Scholar 

  • Liu J, Marians KJ (1999) PriA-directed assembly of a primosome on D loop DNA. J Biol Chem 274:25033–25041

    CAS  PubMed  Google Scholar 

  • Liu YH, Cheng AJ, Wang TCV (1998) Involvement of recF, recO, and recR genes in UVradiation mutagenesis of Escherichia coli. J Bacteriol 180:1766–1770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd RG, Buckman C (1991) Genetic analysis of the recG locus of Escherichia coli-K-12 and of itsrole in recombination and DNA repair. J Bacteriol 173:1004–1011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd RG, Porton MC, Buckman C (1988) Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol Gen Genet 212:317–324

    CAS  PubMed  Google Scholar 

  • Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    CAS  PubMed  Google Scholar 

  • Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    CAS  PubMed  Google Scholar 

  • Lovett ST, Drapkin PT, Sutera VA Jr, Gluckman-Peskind TJ (1993) A sister-strand exchange mechanism for recA-independent deletion of repeated DNA sequences in Escherichia coli. Genetics 135:631–642

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovett ST, Feschenko VV (1996) Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc Natl Acad Sci USA 93:7120–7124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecAindependent pathways. Genetics 160:851–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovett ST, Luisi-DeLuca C, Kolodner RD (1988) The genetic dependence of recombination in recD mutants of Escherichia coli. Genetics 120:37–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, Seifert HS, Cox MM (2006) The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21:41–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madiraju MV, Templin A, Clark AJ (1988) Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci USA 85:6592–6596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marians KJ (2000) PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci 25:185–189

    CAS  PubMed  Google Scholar 

  • Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515

    CAS  PubMed  Google Scholar 

  • Maul RW, Sutton MD (2005) Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187:7607–7618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazin AV, Timchenko TV, Saparbaev MK, Mazina OM (1996) Dimerization of plasmid DNA accelerates selection for antibiotic resistance. Mol Microbiol 20:101–108

    CAS  PubMed  Google Scholar 

  • McGlynn P, AlDeib AA, Liu J, Marians KJ, Lloyd RG (1997) The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212–221

    CAS  PubMed  Google Scholar 

  • McGlynn P, Lloyd RG (1999) RecG helicase activity at three-and four-strand DNA structures. Nuc Ac Res 27:3049–3056

    CAS  Google Scholar 

  • McGlynn P, Lloyd RG (2000) Modulation of RNA polymerase by (P)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101:35–45

    CAS  PubMed  Google Scholar 

  • McGlynn P, Lloyd RG (2002) Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3:859–870

    CAS  PubMed  Google Scholar 

  • McHenry CS (2003) Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49:1157–1165

    CAS  PubMed  Google Scholar 

  • Meddows TR, Savory AP, Grove JI, Moore T, Lloyd RG (2005) RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57:97–110

    CAS  PubMed  Google Scholar 

  • Meddows TR, Savory AP, Lloyd RG (2004) RecG helicase promotes DNA double-strand break repair. Mol Microbiol 52:119–132

    CAS  PubMed  Google Scholar 

  • Michel B (2000) Replication fork arrest and DNA recombination. Trends Biochem Sci 25:173–178

    CAS  PubMed  Google Scholar 

  • Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V (2001) Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181–8188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel B, Grompone G, Flores MJ, Bidnenko V (2004) Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783–12788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel B, Recchia GD, PenelColin M, Ehrlich SD, Sherratt DJ (2000) Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UVirradiated cells. Mol Microbiol 37:180–191

    CAS  PubMed  Google Scholar 

  • Morel P, Hejna JA, Ehrlich SD, Cassuto E (1993) Antipairing and strand transferase activities of E. coli helicase-II (UvrD). Nuc Ac Res 21:3205–3209

    CAS  Google Scholar 

  • Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347

    CAS  PubMed  Google Scholar 

  • Noirot P, Gupta RC, Radding CM, Kolodner RD (2003) Hallmarks of homology recogni-tion by RecA-like recombinases are exhibited by the unrelated Escherichia coli RecT protein. EMBO J 22:324–334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nowosielska A, Calmann MA, Zdraveski Z, Essigmann JM, Marinus MG (2004) Spontaneous and cisplatin-induced recombination in Escherichia coli. DNA Repair (Amst) 3:719–728

    CAS  Google Scholar 

  • Pages V, Koffel-Schwartz N, Fuchs RP (2003) recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli. DNA Repair (Amst) 2:273–284

    CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petranovic M, Zahradka K, Zahradka D, Petranovic D, Nagy B, SalajSmic E, Petranovic D (2001) Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 83:1041–1047

    CAS  PubMed  Google Scholar 

  • Pinto AV, Mathieu A, Marsin S, Veaute X, Ielpi L, Labigne A, Radicella JP (2005) Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol Cell 17:113–120

    CAS  PubMed  Google Scholar 

  • Rangarajan S, Woodgate R, Goodman MF (2002) Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol Microbiol 43:617–628

    CAS  PubMed  Google Scholar 

  • Renzette N, Gumlaw N, Nordman JT, Krieger M, Yeh SP, Long E, Centore R, Boonsombat R, Sandler SJ (2005) Localization of RecA in Escherichia coli K-12 using RecA-GFP. Mol Microbiol 57:1074–1085

    CAS  PubMed  Google Scholar 

  • Robu ME, Inman RB, Cox MM (2001) RecA protein promotes the regression of stalled replication forks in vitro. Proc Natl Acad Sci USA 98:8211–8218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robu ME, Inman RB, Cox MM (2004) Situational repair of replication forks: Roles of RecG and RecA proteins. J Biol Chem 12:10973–10981

    Google Scholar 

  • Rocha EP, Cornet E, Michel B (2005) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1:e15

    PubMed Central  PubMed  Google Scholar 

  • Rupp (1996) DNA repair mechanisms. In: W.D. R (ed). American Society of Microbiology Press, Washington DC, pp 2277–2294

    Google Scholar 

  • Rupp WD, Howard-Flanders P (1968) Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304

    CAS  PubMed  Google Scholar 

  • Sandler SJ, Marians KJ (2000) Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol 182:9–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandler SJ, Samra HS, Clark AJ (1996) Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143:5–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sano Y (1993) Role of the recA-related gene adjacent to the recA gene in Pseudomonas aeruginosa. J Bacteriol 175:2451–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sargentini NJ, Smith KC (1986) Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res 107:58–72

    CAS  PubMed  Google Scholar 

  • Saveson CJ, Lovett ST (1997a) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146:457–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saveson CJ, Lovett ST (1997b) Enhanced deletion formation by aberrant DNA replication in Escherichia coli. Genetics 146:457–470

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schapiro JM, Libby SJ, Fang FC (2003) Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA 100:8496–8501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seigneur M, Bidnenko V, Ehrlich SD, Michel B (1998) RuvAB acts at arrested replication forks. Cell 95:419–430

    CAS  PubMed  Google Scholar 

  • Seigneur M, Ehrlich SD, Michel B (2000) RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Mol Microbiol 38:565–574

    CAS  PubMed  Google Scholar 

  • Shan Q, Bork JM, Webb BL, Inman RB, Cox MM (1997) RecA protein filaments: End-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265:519–540

    CAS  PubMed  Google Scholar 

  • Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301:780–785

    CAS  PubMed  Google Scholar 

  • Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–193

    CAS  PubMed  Google Scholar 

  • Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89

    CAS  PubMed  Google Scholar 

  • Singleton SF, Xiao J (2001) The stretched DNA geometry of recombination and repair nucleoprotein filaments. Biopolymers 61:145–158

    PubMed  Google Scholar 

  • Smith KC (2004) Recombinational DNA repair: the ignored repair systems. Bioessays 26:1322–1326

    CAS  PubMed  Google Scholar 

  • Spies M, Dillingham MS, Kowalczykowski SC (2005) Translocation by the RecB motor is an absolute requirement for {chi}-recognition and RecA protein loading by RecBCD enzyme. J Biol Chem 280:37078–37087

    CAS  PubMed  Google Scholar 

  • Steiner WW, Kuempel PL (1998) Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J Bacteriol 180:6269–6275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stohl EA, Brockman JP, Burkle KL, Morimatsu K, Kowalczykowski SC, Seifert HS (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278:2278–2285

    CAS  PubMed  Google Scholar 

  • Taylor AF, Smith GR (2003) RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity. Nature 423:889–893

    CAS  PubMed  Google Scholar 

  • Thoms B, Wackernagel W (1987) Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol 169:1731–1736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tseng YC, Hung JL, Wang TCV (1994) Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutat Res 315:1–9

    CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

    CAS  PubMed  Google Scholar 

  • van Gool AJ, Hajibagheri NM, Stasiak A, West SC (1999) Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution. Genes Dev 13:1861–1870

    PubMed Central  PubMed  Google Scholar 

  • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent SD, Mahdi AA, Lloyd RG (1996) The RecG branch migration protein Escherichia coli dissociates R-loops. J Mol Biol 264:713–721

    CAS  PubMed  Google Scholar 

  • Wang TC (2005) Discontinuous or semi-discontinuous DNA replication in Escherichia coli? Bioessays 27:633–636

    CAS  PubMed  Google Scholar 

  • Wang TC, Smith KC (1983) Mechanisms for recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB. J Bacteriol 156:1093–1098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang TC, Smith KC (1986) Postreplicational formation and repair of DNA double-strand breaks in UV-irradiated Escherichia coli uvrB cells. Mutat Res 165:39–44

    CAS  PubMed  Google Scholar 

  • Wang TC, Smith KC (1988) Different effects of recJ and recN mutations on the postreplication repair of UV-damaged DNA in Escherichia coli K-12. J Bacteriol 170:2555–2559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang TCV, Chang HY, Hung JL (1993) Cosuppression of recF-mutation, recR-mutation and recO-mutation by mutant recA alleles in Escherichia coli cells. Mutat Res 294:157–166

    CAS  PubMed  Google Scholar 

  • Webb BL, Cox MM, Inman RB (1997) Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347–356

    CAS  PubMed  Google Scholar 

  • West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Ann Rev Genet 31:213–244

    CAS  PubMed  Google Scholar 

  • Whitby MC, Lloyd RG (1995a) Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174179

    Google Scholar 

  • Whitby MC, Lloyd RG (1995b) Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3’-tailed duplex DNA. EMBO J 14:3302–3310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitby MC, Vincent SD, Lloyd RG (1994) Branch migration of Holliday junctions: Identification of RecG protein as a junction specific: DNA helicase. EMBO J 13:5220–5228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Witkin EM (1991) RecA protein in the SOS response — milestones and mysteries. Biochimie 73:133–141

    CAS  PubMed  Google Scholar 

  • Xiao J, Singleton SF (2002) Elucidating a key intermediate in homologous DNA strand exchange: structural characterization of the RecA-triple-stranded DNA complex using fluorescence resonance energy transfer. J Mol Biol 320:529–558

    CAS  PubMed  Google Scholar 

  • Xu L, Marians KJ (2003) PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11:817–826

    CAS  PubMed  Google Scholar 

  • Zieg J, Kushner SR (1977) Analysis of genetic recombination between two partially deleted lactose operons of Escherichia coli K-12. J Bacteriol 131:123–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zieg J, Maples VF, Kushner SR (1978) Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes. J Bacteriol 134:958–966

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michel, B., Baharoglu, Z., Lestini, R. (2007). Genetics of recombination in the model bacterium Escherichia coli . In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_1

Download citation

Publish with us

Policies and ethics