Skip to main content

Geminiviruses

  • Chapter
TT Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 331))

Abstract

Plant pathogenic geminiviruses have been proliferating worldwide and have, therefore, attracted considerable scientific interest during the past three decades. Current knowledge concerning their virion and genome structure, their molecular biology of replication, recombination, transcription, and silencing, as well as their transport through plants and dynamic competition with host responses are summarized. The topics are chosen to provide a comprehensive introduction for animal virologists, emphasizing similarities and differences to the closest functional relatives, polyomaviruses and circoviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberle HJ, Rütz ML, Karayavuz M, et al (2002) Localizing BC1 movement proteins of Abutilon mosaic geminivirus in yeasts by subcellular fractionation and freeze-fracture immunolabel-ling. Arch Virol 147:103–107

    CAS  Google Scholar 

  • Abouzid AM, Frischmuth T, Jeske H (1988) A putative replicative form of the Abutilon mosaic virus (gemini group) in a chromatin-like structure. Mol Gen Genet 212:252–258

    CAS  Google Scholar 

  • Ach RA, Durfee T, Miller AB, et al (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    PubMed  CAS  Google Scholar 

  • Akad F, Dotan N, Czosnek H (2004) Trapping of Tomato yellow leaf curl virus (TYLCV) and other plant viruses with a GroEL homologue from the whitefly Bemisia tabaci. Arch Virol 149:1481–1497

    PubMed  CAS  Google Scholar 

  • Akbergenov R, Si-Ammour A, Blevins T, et al (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    PubMed  CAS  Google Scholar 

  • Alberter B, Rezaian AM, Jeske H (2005) Replicative intermediates of ToLCV and its satellite DNAs. Virology 331:441–448

    PubMed  CAS  Google Scholar 

  • Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, et al (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    PubMed  CAS  Google Scholar 

  • Ashby MK, Warry A, Bejarano ER, et al (1997) Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggests a unique integration event. Plant Mol Biol 35:313–321

    PubMed  CAS  Google Scholar 

  • Atkinson RG, Bieleski LR F, Gleave AP, et al (1998) Post-transcriptional silencing of chalcone synthase in petunia using a geminivirus-based episomal vector. Plant J 15:593–604

    CAS  Google Scholar 

  • Bejarano ER, Khashoggi A, Witty M, et al (1996) Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc Natl Acad Sci USA 93:759–764

    PubMed  CAS  Google Scholar 

  • Bian XY, Rasheed MS, Seemanpillai M, et al (2006) Analysis of silencing escape of Tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact 19:614–624

    PubMed  CAS  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168

    PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, et al (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246

    PubMed  CAS  Google Scholar 

  • Böttcher B, Unseld S, Ceulemans H, et al (2004) Geminate structures of African cassava mosaic virus. J Virol 78:6709–6714

    Google Scholar 

  • Briddon RW, Markham PG (2001) Complementation of bipartite begomovirus movement functions by topocuviruses and curtoviruses. Arch Virol 146:1811–1819

    PubMed  CAS  Google Scholar 

  • Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210

    PubMed  CAS  Google Scholar 

  • Briddon RW, Pinner MS, Stanley J, et al (1990) Geminivirus coat protein gene replacement alters insect specificity. Virology 177:85–94

    PubMed  CAS  Google Scholar 

  • Briddon RW, Bull SE, Amin I, et al (2003) Diversity of DNA beta, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121

    PubMed  CAS  Google Scholar 

  • Briddon RW, Bull SE, Amin I, et al (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324:462–474

    PubMed  CAS  Google Scholar 

  • Briddon RW, Brown JK, Moriones E, et al (2008) Recommendations for the classification and nomenclature of the DNA-beta satellites of begomoviruses. Arch Virol 153:763–781

    PubMed  CAS  Google Scholar 

  • Brough CL, Hayes RJ, Coutts RH A, et al (1988) Effect of mutagenesis in vitro on the ability of cloned tomato golden mosaic virus DNA to infect Nicotiana benthamiana plants. J Gen Virol 69:481–492

    Google Scholar 

  • Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Google Scholar 

  • Campos-Olivas R, Louis JM, Clerot D, Gronenborn B, Gronenborn AM (2002) The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci USA 99:10310–10315

    PubMed  CAS  Google Scholar 

  • Carrillo-Tripp J, Shimada-Beltran H, Rivera-Bustamante R (2006) Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol 9:209–215

    PubMed  CAS  Google Scholar 

  • Carvalho MF, Lazarowitz SG (2004) Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for Cabbage leaf curl geminivirus infection and patho-genicity. J Virol 78:11161–11171

    PubMed  CAS  Google Scholar 

  • Carvalho MF, Turgeon R, Lazarowitz SG (2006) The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol 140:1317–1330

    PubMed  CAS  Google Scholar 

  • Castellano MM, Sanz-Burgos AP, Gutierrez C (1999) Initiation of DNA replication in a eukaryo-tic rolling-circle replication: identification of multiple DNA-protein complexes at the gemini-virus origin. J Mol Biol 290:639–652

    PubMed  CAS  Google Scholar 

  • Castillo AG, Collinet D, Deret S, et al (2003) Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312:381–394

    PubMed  CAS  Google Scholar 

  • Castillo AG, Kong LJ, Hanley-Bowdoin L, et al (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol 78:2758–2769

    PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386

    PubMed  CAS  Google Scholar 

  • Choudhury NR, Malik PS, Singh DK, et al (2006) The oligomeric Rep protein of Mung bean yellow mosaic India virus (MYMIV) is a likely replicative helicase. Nucleic Acids Res 34:6362–6377

    PubMed  CAS  Google Scholar 

  • Clerot D, Bernardi F (2006) DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol 80:11322–11330

    PubMed  CAS  Google Scholar 

  • Costa AS (1976) Whitefly transmitted plant diseases. Annu Rev Phytopathol 16:429–449

    Google Scholar 

  • Cui X, Li G, Wang D, et al (2005) A begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775

    PubMed  CAS  Google Scholar 

  • Czosnek H, Ghanim M, Morin S, et al (2001) Whiteflies: vectors, and victims (?), of geminivi-ruses. Adv Virus Res 57:291–322

    PubMed  CAS  Google Scholar 

  • Davies JW, Stanley J (1989) Geminivirus genes and vectors. Trends Genet 5:77–81

    PubMed  CAS  Google Scholar 

  • Dickinson VJ, Halder J, Woolston CJ (1996) The product of maize streak virus ORF V1 is associated with secondary plasmodesmata and is first detected with the onset of viral lesions. Virology 220:51–59

    PubMed  CAS  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    PubMed  CAS  Google Scholar 

  • Dry IB, Krake LR, Rigden JE, et al (1997) A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093

    PubMed  CAS  Google Scholar 

  • Duan YP, Powell CA, Purcifull DE, et al (1997) Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Mol Plant Microbe Interact 10:1065–1074

    PubMed  CAS  Google Scholar 

  • Duffy S, Holmes EC (2008) Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 82:957–965

    PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • Eagle PA, Hanley-Bowdoin L (1997) Cis elements that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. J Virol 71:6947–6955

    PubMed  CAS  Google Scholar 

  • Eagle PA, Orozco BM, Hanley-Bowdoin L (1994) A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6:1157–1170

    PubMed  CAS  Google Scholar 

  • Ermak G, Paszkowski U, Wohlmuth M, et al (1993) Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Nucleic Acids Res 25:3445–3450

    Google Scholar 

  • Evans D, Jeske H (1993) DNA B facilitates, but is not essential for, the spread of Abutilon mosaic virus in agroinoculated Nicotiana benthamiana. Virology 194:752–757

    PubMed  CAS  Google Scholar 

  • Fargette D, Konate G, Fauquet C, et al (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260

    PubMed  CAS  Google Scholar 

  • Fauquet CM, Stanley J (2005) Revising the way we conceive and name viruses below the species level: a review of geminivirus taxonomy calls for new standardized isolate descriptors. Arch Virol 150:2151–2179

    PubMed  CAS  Google Scholar 

  • Fauquet CM, Briddon RW, Brown JK, et al (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    PubMed  CAS  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MR, et al (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    PubMed  CAS  Google Scholar 

  • Fofana IB, Sangare A, Collier R, et al (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56:613–624

    PubMed  CAS  Google Scholar 

  • Fondong VN, Reddy RV, Lu C, et al (2007) The consensus N-myristoylation motif of a geminivi-rus AC4 protein is required for membrane binding and pathogenicity. Mol Plant Microbe Interact 20:380–391

    PubMed  CAS  Google Scholar 

  • Fontes EP, Santos AA, Luz DF, et al (2004) The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev 18:2545–2556

    PubMed  CAS  Google Scholar 

  • Frischmuth S, Frischmuth T, Jeske H (1991) Transcript mapping of Abutilon mosaic virus, a geminivirus. Virology 185:596–604

    PubMed  CAS  Google Scholar 

  • Frischmuth S, Frischmuth T, Latham J, et al (1993a) Transcriptional analysis of the virus-sense genes of the geminivirus beet curly top virus. Virology 197:312–319

    CAS  Google Scholar 

  • Frischmuth S, Kleinow T, Aberle HJ, et al (2004) Yeast two-hybrid systems confirm the membrane-association and oligomerization of BC1 but do not detect an interaction of the movement proteins BC1 and BV1 of Abutilon mosaic geminivirus. Arch Virol 149:2349–2364

    PubMed  CAS  Google Scholar 

  • Frischmuth S, Wege C, Hülser D, et al (2007) The movement protein BC1 promotes redirection of the nuclear shuttle protein BV1 of Abutilon mosaic geminivirus to the plasma membrane in fission yeast. Protoplasma 230:117–123

    PubMed  CAS  Google Scholar 

  • Frischmuth T, Roberts S, von Arnim A, et al (1993b) Specificity of bipartite geminivirus movement proteins. Virology 196:666–673

    CAS  Google Scholar 

  • Gafni Y, Epel BL (2002) The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Mol Plant Pathol 60:231–241

    CAS  Google Scholar 

  • Garcia-Andres S, Tomas DM, Sanchez-Campos S, et al (2007) Frequent occurrence of recom-binants in mixed infections of tomato yellow leaf curl disease-associated begomoviruses. Virology 365:210–219

    PubMed  CAS  Google Scholar 

  • Gilbertson R, Lucas WJ (1996) How do viruses traffic on the ‘vascular highway’? Trends Plant Sci 1:260–268

    Google Scholar 

  • Glick E, Zrachya A, Levy Y, et al (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA 105:157–161

    PubMed  CAS  Google Scholar 

  • Goodman RM (1977) Single-stranded DNA genome in a whitefly-transmitted plant virus. Virology 83:171–179

    PubMed  CAS  Google Scholar 

  • Goodman RM (1981) Geminiviruses. J Gen Virol 54:9–21

    CAS  Google Scholar 

  • Gopal P, Pravin Kumar P, Sinilal B, et al (2007) Differential roles of C4 and betaC1 in mediating suppression of post-transcriptional gene silencing: evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite begomovirus. Virus Res 123:9–18

    PubMed  CAS  Google Scholar 

  • Gröning BR, Hayes RJ, Buck KW (1994) Simultaneous regulation of tomato golden mosaic virus coat protein and AL1 gene expression: expression of the AL4 gene may contribute to suppression of the AL1 gene. J Gen Virol 75:721–726

    PubMed  Google Scholar 

  • Gronenborn B (2004) Nanoviruses: genome organisation and protein function. Vet Microbiol 98:103–109

    PubMed  CAS  Google Scholar 

  • Guerra-Peraza O, Kirk D, Seltzer V, et al (2005) Coat proteins of Rice tungro bacilliform virus and Mung bean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. J Gen Virol 86:1815–1826

    PubMed  CAS  Google Scholar 

  • Gutierrez C (2000a) DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799

    CAS  Google Scholar 

  • Gutierrez C (2000b) Geminiviruses and the plant cell cycle. Plant Mol Biol 43:763–772

    CAS  Google Scholar 

  • Gutierrez C, Ramirez-Parra E, Mar Castellano M, et al (2004) Geminivirus DNA replication and cell cycle interactions. Vet Microbiol 98:111–119

    PubMed  CAS  Google Scholar 

  • Ha C, Coombs S, Revill P, et al (2006) Corchorus yellow vein virus, a New World geminivirus from the Old World. J Gen Virol 87:997–1003

    PubMed  CAS  Google Scholar 

  • Ha C, Coombs S, Revill P, et al (2008) Molecular characterization of begomoviruses and DNA satellites from Vietnam: additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. J Gen Virol 89:312–326

    PubMed  CAS  Google Scholar 

  • Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16

    PubMed  CAS  Google Scholar 

  • Hallan V, Gafni Y (2001) Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Arch Virol 146:1765–1773

    PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, et al (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. CRC Crit Rev Plant Sci 18:71–106

    CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Robertson D (2004) Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156

    CAS  Google Scholar 

  • Hao L, Wang H, Sunter G, et al (2003) Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15:1034–1048

    PubMed  CAS  Google Scholar 

  • Harper G, Hull R, Lockhart B, et al (2002) Viral sequences integrated into plant genomes. Annu Rev Phytopathol 40:119–136

    PubMed  CAS  Google Scholar 

  • Harrison BD (1985) Advances in geminivirus research. Annu Rev Phytopathol 23:55–82

    CAS  Google Scholar 

  • Harrison BD, Robinson DJ (1999) Natural genomic and antigenic variation in whitefly-transmit-ted geminiviruses (begomoviruses). Annu Rev Phytopathol 37:369–398

    PubMed  CAS  Google Scholar 

  • Harrison BD, Barker H, Bock KR, et al (1977) Plant-viruses with circular single-stranded DNA. Nature 270:760–762

    CAS  Google Scholar 

  • Hehnle S, Wege C, Jeske H (2004) The interaction of DNA with the movement proteins of gemi-niviruses revisited. J Virol 78:7698–7706

    PubMed  CAS  Google Scholar 

  • Höfer P, Bedford ID, Markham PG, et al (1997) Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology 236:288–295

    PubMed  Google Scholar 

  • Höhnle M, Höfer P, Bedford ID, et al (2001) Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290:164–171

    PubMed  Google Scholar 

  • Homs M, Kober S, Kepp G, Jeske H (2008) Mitochondrial plasmids of sugar beet amplified via rolling circle method detected during curtovirus screening. Virus Res 136:124–129

    PubMed  CAS  Google Scholar 

  • Hormuzdi SG, Bisaro DM (1995) Genetic analysis of beet curly top virus: examination of the roles of L2 and L3 genes in viral pathogenesis. Virology 206:1044–1054

    PubMed  CAS  Google Scholar 

  • Horns T, Jeske H (1991) Localization of Abutilon mosaic virus DNA within leaf tissue by in-situ hybridization. Virology 181:580–588

    PubMed  CAS  Google Scholar 

  • Horvath GV, Pettko-Szandtner A, Nikovics K, et al (1998) Prediction of functional regions of the maize streak virus replication-associated proteins by protein-protein interaction analysis. Plant Mol Biol 38:699–712

    PubMed  CAS  Google Scholar 

  • Hou YM, Sanders R, Ursin VM, et al (2000) Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infection by Tomato mottle virus in transgenic tomatoes expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol Plant Microbe Interact 13:297–308

    PubMed  CAS  Google Scholar 

  • Hull R (2002) Matthews' plant virology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Hull R, Davies JW (1992) Approaches to nonconventional control of plant virus diseases. CRC Crit Rev Plant Sci 11:17–33

    CAS  Google Scholar 

  • Ingham DJ, Pascal E, Lazarowitz SG (1995) Both bipartite geminivirus movement proteins define viral host range, but only BL1 determines viral pathogenicity. Virology 207:191–204

    PubMed  CAS  Google Scholar 

  • Jeffrey JL, Pooma W, Petty IT (1996) Genetic requirements for local and systemic movement of tomato golden mosaic virus in infected plants. Virology 223:208–218

    PubMed  CAS  Google Scholar 

  • Jeske H (2007) Replication of geminiviruses and the use of rolling circle amplification for their diagnosis. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 141–156

    Google Scholar 

  • Jeske H, Werz G (1980a) Ultrastructural and biochemical investigations on the whitefly transmitted Abutilon mosaic virus (AbMV). J Phytopathol 97:43–55

    CAS  Google Scholar 

  • Jeske H, Werz G (1980b) Cytochemical characterization of plastidal inclusions in Abutilon mosaic infected Malva parviflora mesophyll cells. Virology 106:155–158

    CAS  Google Scholar 

  • Jeske H, Menzel D, Werz G (1977) Electron microscopic studies on intranuclear virus-like inclusions in mosaic-diseased Abutilon sellowianum Reg. J Phytopathol 89:289–295

    Google Scholar 

  • Jeske H, Lütgemeier M, Preiss W (2001) Distinct DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic geminivirus. EMBO J 20:6158–6167

    PubMed  CAS  Google Scholar 

  • Jovel J, Preiß W, Jeske H (2007) Characterization of DNA-intermediates of an arising geminivi-rus. Virus Res 130:63–70

    PubMed  CAS  Google Scholar 

  • Jupin I, De Kouchkovsky F, Jouanneau F, et al (1994) Movement of tomato yellow leaf curl gemi-nivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204:82–90

    PubMed  CAS  Google Scholar 

  • Kartha KK, Gamborg OL (1975) Elimination of cassava mosaic disease by meristem culture. Phytopathology 65:826–828

    Google Scholar 

  • Kenton A, Khashoggi A, Parokonny A, et al (1995) Chromosomal location of endogenous gemini-virus-related DNA sequences in Nicotiana tabacum L. Chromosome Res 3:346–350

    PubMed  CAS  Google Scholar 

  • Kheyr-Pour A, Bananej K, Dafalla GA, et al (2000) Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparison and identification of a whitefly-transmission determinant. Phytopathology 90:629–635

    PubMed  CAS  Google Scholar 

  • Kirthi N, Savithri HS (2003) A conserved zinc finger motif in the coat protein of Tomato leaf curl Bangalore virus is responsible for binding to ssDNA. Arch Virol 148:2369–2380

    PubMed  CAS  Google Scholar 

  • Kittelmann K, Jeske H (2008) Disassembly of African cassava mosaic virus. J Gen Virol 89:2029–2036

    PubMed  CAS  Google Scholar 

  • Kjemtrup S, Sampson KS, Peele CG, et al (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    PubMed  CAS  Google Scholar 

  • Kleinow T, Holeiter G, Nischang M, et al (2008) Post-translational modifications of Abutilon mosaic virus movement protein (BC1) in fission yeast. Virus Res 131:86–94

    PubMed  CAS  Google Scholar 

  • Klinkenberg FA, Stanley J (1990) Encapsidation and spread of African cassava mosaic virus DNA A in the absence of DNA B when agroinoculated to Nicotiana benthamiana. J Gen Virol 71:1409–1412

    CAS  Google Scholar 

  • Kong LJ, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14:1817–1832

    PubMed  CAS  Google Scholar 

  • Kong LJ, Orozco BM, Roe JL, et al (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    PubMed  CAS  Google Scholar 

  • Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73:2763–2766

    PubMed  CAS  Google Scholar 

  • Kotlizky G, Boulton MI, Pitaksutheepong C, et al (2000) Intracellular and intercellular movement of maize streak geminivirus V1 and V2 proteins transiently expressed as green fluorescent protein fusions. Virology 274:32–38

    PubMed  CAS  Google Scholar 

  • Krenz B, Wege C, Jeske H (2008) Abutilon mosaic virus as a stable and attenuated vector for virus-induced gene silencing and limited phloem-specific protein expression. (submitted).

    Google Scholar 

  • Kunik T, Palanichelvam K, Czosnek H, et al (1998) Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 13:393–399

    PubMed  CAS  Google Scholar 

  • Kunik T, Mizrachy L, Citovsky V, et al (1999) Characterization of a tomato karyopherin alpha that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein. J Exp Bot 50:731–732

    CAS  Google Scholar 

  • Lazarowitz SG (1992) Geminiviruses: genome structure and gene function. CRC Crit Rev Plant Sci 11:327–349

    CAS  Google Scholar 

  • Lazarowitz SG (1999) Probing plant cell structure and function with viral movement proteins. Curr Opin Plant Biol 2:332–338

    PubMed  CAS  Google Scholar 

  • Lazarowitz SG, Beachy RN (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548

    PubMed  CAS  Google Scholar 

  • Lefeuvre P, Martin DP, Hoareau M, et al (2007) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468

    PubMed  CAS  Google Scholar 

  • Levy A, Czosnek H (2003) The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem. Plant Mol Biol 53:789–803

    PubMed  CAS  Google Scholar 

  • Li D, Behjatnia SA, Dry IB, et al (2007) Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellite-mediated delivery of heterologous DNAs. J Gen Virol 88:2073–2077

    PubMed  CAS  Google Scholar 

  • Lim KY, Matyasek R, Lichtenstein CP, et al (2000) Molecular cytogenetic analyses and phyloge-netic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    PubMed  CAS  Google Scholar 

  • Liu H, Boulton MI, Oparka KJ, et al (2001) Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J Gen Virol 82:35–44

    PubMed  CAS  Google Scholar 

  • Liu HT, Boulton MI, Davies JW (1997) Maize streak virus coat protein binds single- and double-stranded DNA in vitro. J Gen Virol 78:1265–1270

    PubMed  CAS  Google Scholar 

  • Liu L, Saunders K, Thomas CL, et al (1999) Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256:270–279

    PubMed  CAS  Google Scholar 

  • Lucy AP, Boulton MI, Davies JW, et al (1996) Tissue specificity of Zea mays infection by maize streak virus. Mol Plant Microbe Interact 9:22–31

    CAS  Google Scholar 

  • Luque A, Sanz-Burgos AP, Ramirez-Parra E, et al (2002) Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302:83–94

    PubMed  CAS  Google Scholar 

  • Malik PS, Kumar V, Bagewadi B, et al (2005) Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology 337:273–283

    PubMed  CAS  Google Scholar 

  • Mansoor S, Briddon RW, Zafar Y, et al (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    PubMed  CAS  Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, et al (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318:24–31

    PubMed  CAS  Google Scholar 

  • Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    PubMed  CAS  Google Scholar 

  • Martin DP, van der Walt E, Posada D, et al (2005) The evolutionary value of recombination is constrained by genome modularity. PLoS Genet 1:475–479

    CAS  Google Scholar 

  • McGarry RC, Barron YD, Carvalho MF, et al (2003) A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15:1605–1618

    PubMed  CAS  Google Scholar 

  • McGivern DR, Findlay KC, Montague NP, et al (2005) An intact RBR-binding motif is not required for infectivity of Maize streak virus in cereals, but is required for invasion of meso-phyll cells. J Gen Virol 86:797–801

    PubMed  CAS  Google Scholar 

  • Missich R, Ramirez-Parra E, Gutierrez C (2000) Relationship of oligomerization to DNA binding of Wheat dwarf virus RepA and Rep proteins. Virology 273:178–188

    PubMed  CAS  Google Scholar 

  • Moffat A (1999) Geminiviruses emerge as serious crop threat. Science 286:1835

    CAS  Google Scholar 

  • Morales FJ (2006) History and current distribution of begomoviruses in Latin America. Adv Virus Res 67:127–162

    PubMed  Google Scholar 

  • Morales FJ (2007) Tropical Whitefly IPM Project. Adv Virus Res 69:249–311

    PubMed  CAS  Google Scholar 

  • Morales FJ, Anderson PK (2001) The emergence and dissemination of whitefly-transmitted gemi-niviruses in Latin America. Arch Virol 146:415–441

    PubMed  CAS  Google Scholar 

  • Morales FJ, Jones PG (2004) The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res 100:57–65

    PubMed  CAS  Google Scholar 

  • Morilla G, Krenz B, Jeske H, et al (2004) Tête á tête of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in single nuclei. J Virol 78:10715–10723

    PubMed  CAS  Google Scholar 

  • Morilla G, Castillo AG, Preiß W, et al (2006) A versatile transreplication-based system to identify cellular proteins involved in geminivirus replication. J Virol 80:3624–3633

    PubMed  CAS  Google Scholar 

  • Morin S, Ghanim M, Zeidan M, et al (1999) A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256:75–84

    PubMed  CAS  Google Scholar 

  • Morra MR, Petty IT (2000) Tissue specificity of geminivirus infection is genetically determined. Plant Cell 12:2259–2270

    PubMed  CAS  Google Scholar 

  • Muangsan N, Robertson D (2004) Geminivirus vectors for transient gene silencing in plants. Methods Mol Biol 265:101–115

    PubMed  CAS  Google Scholar 

  • Muangsan N, Beclin C, Vaucheret H, et al (2004) Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38:1004–1014

    PubMed  CAS  Google Scholar 

  • Munoz-Martin A, Collin S, Herreros E, et al (2003) Regulation of MSV and WDV virion-sense promoters by WDV nonstructural proteins: a role for their retinoblastoma protein-binding motifs. Virology 306:313–323

    PubMed  CAS  Google Scholar 

  • Murad L, Bielawski JP, Matyasek R, et al (2004) The origin and evolution of geminivirus-related DNA sequences in Nicotiana. Heredity 92:352–358

    PubMed  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, et al (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    PubMed  CAS  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmatal transport. Cell 76:925–932

    PubMed  CAS  Google Scholar 

  • Orozco BM, Hanley-Bowdoin L (1998) Conserved sequence and structural motifs contribute to the DNA binding and cleavage activities of a geminivirus replication protein. J Biol Chem 273:24448–24456

    PubMed  CAS  Google Scholar 

  • Owor BE, Martin DP, Shepherd DN, et al (2007) Genetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. J Gen Virol 88:3154–3165

    PubMed  CAS  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1996) The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224:390–404

    PubMed  CAS  Google Scholar 

  • Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 285:218–225

    Google Scholar 

  • Palanichelvam K, Kunik T, Citovsky V, et al (1998) The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J Gen Virol 79:2829–2833

    PubMed  CAS  Google Scholar 

  • Palmer KE, Rybicki EP (1998) The molecular biology of mastreviruses. Adv Virus Res 50:183–234

    PubMed  CAS  Google Scholar 

  • Pascal E, Goodlove PE, Wu LC, et al (1993) Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5:795–807

    PubMed  CAS  Google Scholar 

  • Pascal E, Sanderfoot AA, Ward BM, et al (1994) The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6:995–1006

    PubMed  CAS  Google Scholar 

  • Patil BL, Dasgupta I (2005) Defective interfering DNAs of plant viruses. CRC Crit Rev Plant Sci 24:1–18

    Google Scholar 

  • Peele C, Jordan CV, Muangsan N, et al (2001) Silencing of a meristematic gene, proliferating cell nuclear antigen (PCNA), using geminivirus-derived vectors. Plant J 271:357–366

    Google Scholar 

  • Petty IT, Miller CG, Meade-Hash TJ, et al (1995) Complementable and noncomplementable host adaptation defects in bipartite geminiviruses. Virology 212:263–267

    PubMed  CAS  Google Scholar 

  • Pilartz M, Jeske H (1992) Abutilon mosaic geminivirus double-stranded DNA is packed into mini- chromosomes. Virology 189:800–802

    PubMed  CAS  Google Scholar 

  • Pilartz M, Jeske H (2003) Mapping of Abutilon mosaic geminivirus minichromosomes. J Virol 77:10808–10818

    PubMed  CAS  Google Scholar 

  • Piroux N, Saunders K, Page A, et al (2007) Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKeta, a component of the brassinoster-oid signalling pathway. Virology 362:428–440

    PubMed  CAS  Google Scholar 

  • Pita JS, Fondong VN, Sangare A, et al (2001) Recombination, pseudorecombination and syner-gism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82:655–665

    PubMed  CAS  Google Scholar 

  • Pohl D, Wege C (2007) Synergistic pathogenicity of a phloem-limited begomovirus and tobamo-viruses despite negative interference. J Gen Virol 88:1034–1040

    PubMed  CAS  Google Scholar 

  • Pooggin M, Hohn T (2004) Fighting geminiviruses by RNAi and vice versa. Plant Mol Biol 55:149–152

    PubMed  CAS  Google Scholar 

  • Pooggin M, Shivaprasad PV, Veluthambi K, et al (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    PubMed  CAS  Google Scholar 

  • Preiss W, Jeske H (2003) Multitasking in replication is common among geminiviruses. J Virol 77:2972–2980

    PubMed  CAS  Google Scholar 

  • Qin SW, Ward BM, Lazarowitz SG (1998) The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol 72:9247–9256

    PubMed  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41:369–419

    Google Scholar 

  • Rojas MR, Noueiry AO, Lucas WJ, et al (1998) Bean dwarf mosaic geminivirus movement proteins recognize DNA in a form- and size-specific manner. Cell 95:105–113

    PubMed  CAS  Google Scholar 

  • Rojas MR, Jiang H, Salati R, et al (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    PubMed  CAS  Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, et al (2005) Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    PubMed  CAS  Google Scholar 

  • Rothenstein D, Krenz B, Selchow O, et al (2007) Tissue and cell tropism of Indian cassava mosaic virus (ICMV) and its AV2 (precoat) gene product. Virology 359:137–145

    PubMed  CAS  Google Scholar 

  • Rybicki EP (1994) A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch Virol 139:49–77

    PubMed  CAS  Google Scholar 

  • Rybicki EP, Pietersen G (1999) Plant virus disease problems in the developing world. Adv Virus Res 53:127–175

    PubMed  CAS  Google Scholar 

  • Saeed M, Behjatnia SA A, Mansoor S, et al (2005) A geminiviral DNA beta satellite modulates pathogenesis by a single complementary-sense transcript. Mol Plant Microbe Interact 18:7–14

    PubMed  CAS  Google Scholar 

  • Saeed M, Zafar Y, Randles JW, et al (2007) A monopartite begomovirus-associated DNA beta satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88:2881–2889

    PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1995) Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7:1185–1194

    PubMed  CAS  Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1996) Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6:353–358

    PubMed  CAS  Google Scholar 

  • Saunders K, Wege C, Karuppannan V, et al (2001) The distinct disease phenotypes of the common and yellow vein strains of Tomato golden mosaic virus are determined by nucleotide differences in the 3'-terminal region of the gene encoding the movement protein. J Gen Virol 82:45–51

    PubMed  CAS  Google Scholar 

  • Saunders K, Bedford ID, Yahara T, et al (2003) Aetiology: the earliest recorded plant virus disease. Nature 422:831

    PubMed  CAS  Google Scholar 

  • Saunders K, Norman A, Gucciardo S, et al (2004) The DNA beta satellite component associated with Ageratum yellow vein disease encodes an essential pathogenicity protein (beta C1). Virology 324:37–47

    PubMed  CAS  Google Scholar 

  • Seemanpillai M, Dry I, Randles J, et al (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact 16:429–438

    PubMed  CAS  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, et al (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    PubMed  CAS  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, et al (2006) Identification and characterization of a host revers-ibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein. Plant Mol Biol 61:297–310

    PubMed  CAS  Google Scholar 

  • Settlage SB, Miller AB, Gruissem W, et al (2001) Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279:570–576

    PubMed  CAS  Google Scholar 

  • Settlage SB, See RG, Hanley-Bowdoin L (2005) Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885–9895

    PubMed  CAS  Google Scholar 

  • Shen W, Hanley-Bowdoin L (2006) Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol 142:1642–1655

    PubMed  CAS  Google Scholar 

  • Shepherd DN, Martin DP, McGivern DR, et al (2005) A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR-Rep binding. J Gen Virol 86:803–813

    PubMed  CAS  Google Scholar 

  • Shepherd DN, Martin DP, Varsani A, et al (2006) Restoration of native folding of single-stranded DNA sequences through reverse mutations: an indication of a new epigenetic mechanism. Arch Biochem Biophys 453:108–122

    PubMed  CAS  Google Scholar 

  • Shimada-Beltran H, Rivera-Bustamante RF (2007) Early and late gene expression in pepper huasteco yellow vein virus. J Gen Virol 88:3145–3153

    PubMed  CAS  Google Scholar 

  • Shivaprasad PV, Akbergenov R, Trinks D, et al (2005) Promoters, transcripts, and regulatory proteins of mung bean yellow mosaic geminivirus. J Virol 79:8149–8163

    PubMed  CAS  Google Scholar 

  • Shung CY, Sunter G (2007) AL1-dependent repression of transcription enhances expression of Tomato golden mosaic virus AL2 and AL3. Virology 364:112–122

    PubMed  CAS  Google Scholar 

  • Shung CY, Sunter J, Sirasanagandla SS, et al (2006) Distinct viral sequence elements are necessary for expression of Tomato golden mosaic virus complementary sense transcripts that direct AL2 and AL3 gene expression. Mol Plant Microbe Interact 19:1394–13405

    PubMed  CAS  Google Scholar 

  • Stanley J (1985) The molecular biology of geminiviruses. Adv Virus Res 31:139–177

    Google Scholar 

  • Stanley J (2004) Subviral DNAs associated with geminivirus disease complexes. Vet Microbiol 98:121–129

    PubMed  CAS  Google Scholar 

  • Stanley J, Davies JW (1985) Structure and function of the DNA genome of geminiviruses. In: Davies J (ed) Molecular plant virology. CRC Press, Boca Raton, pp 191–218

    Google Scholar 

  • Stanley J, Bisaro DM, Briddon RW, et al (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, et al (eds) Virus taxonomy. VIIIth report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, London, pp 301–326

    Google Scholar 

  • Suarez-Lopez P, Martinez-Sals E, Hernandez P, et al (1995) Bent DNA in the large intergenic region of wheat dwarf geminivirus. Virology 208:303–311

    PubMed  CAS  Google Scholar 

  • Sung P, Krejci L, Van Komen S, et al (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732

    PubMed  CAS  Google Scholar 

  • Sunter G, Bisaro DM (1991) Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180:416–419

    PubMed  CAS  Google Scholar 

  • Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    PubMed  CAS  Google Scholar 

  • Sunter G, Bisaro DM (1997) Regulation of a geminivirus coat protein promoter by AL2 protein (TrAP): evidence for activation and derepression mechanisms. Virology 232:269–280

    PubMed  CAS  Google Scholar 

  • Sunter G, Hartitz MD, Hormuzdi SG, et al (1990) Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179:69–77

    PubMed  CAS  Google Scholar 

  • Sunter G, Hartitz MD, Bisaro DM (1993) Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology 195:275–280

    PubMed  CAS  Google Scholar 

  • Sunter G, Stenger DC, Bisaro DM (1994) Heterologous complementation by geminivirus AL2 and AL3 genes. Virology 203:203–210

    PubMed  CAS  Google Scholar 

  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670

    PubMed  CAS  Google Scholar 

  • Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850–860

    PubMed  CAS  Google Scholar 

  • Thresh JM (2006) Control of tropical plant virus diseases. Adv Virus Res 67:245–295

    PubMed  CAS  Google Scholar 

  • Thresh JM, Cooter RJ (2005) Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathol 54:587–614

    Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, et al (2005) Suppression of RNA silencing by a gemini-virus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    PubMed  CAS  Google Scholar 

  • Tu J, Sunter G (2007) A conserved binding site within the Tomato golden mosaic virus AL-1629 promoter is necessary for expression of viral genes important for pathogenesis. Virology 367:117–125

    PubMed  CAS  Google Scholar 

  • Unseld S, Ringel M, Konrad A, et al (2000a) Virus-specific adaptations for the production of a pseudorecombinant virus formed by two distinct bipartite geminiviruses from Central America. Virology 274:179–188

    CAS  Google Scholar 

  • Unseld S, Ringel M, Höfer P, et al (2000b) Host range and symptom variation of pseudorecom-binant virus produced by two distinct bipartite geminiviruses. Arch Virol 145:1449–1454

    CAS  Google Scholar 

  • Unseld S, Höhnle M, Ringel M, et al (2001) Subcellular targeting of the coat protein of African cassava mosaic geminivirus. Virology 286:373–383

    PubMed  CAS  Google Scholar 

  • Unseld S, Frischmuth T, Jeske H (2004) Short deletions in nuclear targeting sequences of African cassava mosaic virus coat protein prevent geminivirus twinned particle formation. Virology 318:89–100

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    PubMed  Google Scholar 

  • Vanderschuren H, Akbergenov R, Pooggin MM, et al (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549–557

    PubMed  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS, et al (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    PubMed  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Fauquet CM (2005) Geminiviruses and RNA silencing. Trends Plant Sci 10:144–151

    PubMed  CAS  Google Scholar 

  • Vega-Rocha S, Byeon IL, Gronenborn B, Gronenborn AM, Campos-Olivas R (2007a) Solution structure, divalent metal and DNA binding of the endonuclease domain from the replication initiation protein from porcine circovirus. J Mol Biol 367:473–487

    CAS  Google Scholar 

  • Vega-Rocha S, Gronenborn B, Gronenborn AM, Campos-Olivas R (2007b) Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus Faba bean necrotic yellow virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 46:6201–6212

    CAS  Google Scholar 

  • von Arnim A, Frischmuth T, Stanley J (1993) Detection and possible functions of African cassava mosaic virus DNA B gene products. Virology 192:264–272

    Google Scholar 

  • Waigmann E, Ueki S, Trutnyeva K, et al (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. CRC Crit Rev Plant Sci 23:195–250

    CAS  Google Scholar 

  • Wang H, Hao L, Shung CY, et al (2003) Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15:3020–3032

    PubMed  CAS  Google Scholar 

  • Wang H, Buckley KJ, Yang X, et al (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418

    PubMed  CAS  Google Scholar 

  • Ward BM, Medville R, Lazarowitz SG, et al (1997) The geminivirus BL1 movement protein is associated with endoplasmic reticulum-derived tubules in developing phloem cells. J Virol 71:3726–3733

    PubMed  CAS  Google Scholar 

  • Wege C (2007) Movement and localization of Tomato yellow leaf curl viruses in the infected plant. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 185–206

    Google Scholar 

  • Wege C, Pohl D (2007) Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants. Virology 365:173–186

    PubMed  CAS  Google Scholar 

  • Wege C, Siegmund D (2007) Synergism of a DNA and an RNA virus: enhanced tissue infiltration of the begomovirus Abutilon mosaic virus (AbMV) mediated by Cucumber mosaic virus (CMV). Virology 357:10–28

    PubMed  CAS  Google Scholar 

  • Wege C, Gotthardt RD, Frischmuth T, et al (2000) Fulfilling Koch's postulates for Abutilon mosaic virus. Arch Virol 145:2217–2225

    PubMed  CAS  Google Scholar 

  • Wright EA, Heckel T, Groenendijk J, et al (1997) Splicing features in maize streak virus virion-and complementary-sense gene expression. Plant J 12:1285–1297

    PubMed  CAS  Google Scholar 

  • Xie Q, Suarez-Lopez P, Gutierrez C (1995) Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082

    PubMed  CAS  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Hannon GJ, et al (1996) Plant cells contain a novel member of the retino-blastoma family of growth regulatory proteins. EMBO J 15:4900–4908

    PubMed  CAS  Google Scholar 

  • Xie Q, Sanz-Burgos AP, Guo H, et al (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656

    PubMed  CAS  Google Scholar 

  • Yang X, Baliji S, Buchmann RC, et al (2007) Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction. J Virol 81:11972–11981

    PubMed  CAS  Google Scholar 

  • Zhang SC, Wege C, Jeske H (2001a) Movement proteins (BC1 and BV1) of Abutilon mosaic geminivirus are cotransported in and between cells of sink but not of source leaves as detected by green fluorescent protein tagging. Virology 290:249–260

    CAS  Google Scholar 

  • Zhang SC, Ghosh R, Jeske H (2002) Subcellular targeting domains of Abutilon mosaic geminivi-rus movement protein BC1. Arch Virol 147:2349–2363

    PubMed  CAS  Google Scholar 

  • Zhang W, Olson NH, Baker TS, et al (2001b) Structure of the maize streak virus geminate particle. Virology 279:471–477

    CAS  Google Scholar 

  • Zrachya A, Glick E, Levy Y, et al (2007) Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358:159–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jeske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeske, H. (2009). Geminiviruses. In: de Villiers, EM., Hausen, H.z. (eds) TT Viruses. Current Topics in Microbiology and Immunology, vol 331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70972-5_11

Download citation

Publish with us

Policies and ethics