Skip to main content

Overview of Radiosurgery Technology

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery

Abstract

Stereotactic radiosurgery (SRS) is still often referred to as a new or “high tech” treatment. And yet it is 57 years since Lars Leksell invented the concept and coined the term radiosurgery [1]. After experimenting with orthovoltage irradiation and considering heavy particle use, Leksell invented the Gamma Knife (GK) in 1967 [2]. In the early 1980s, Betti and Derechinsky, and Colombo, et al. adapted linear accelerators (Linacs) to deliver photon based SRS [36], thereby ushering in the second generation of SRS devices. Linacs offered a promising alternative form of external beam radiotherapy to the gamma knife [79].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 1951;102:316–9.

    PubMed  CAS  Google Scholar 

  2. Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psyc 1983;46:797–803.

    CAS  Google Scholar 

  3. Jayarao M, Chin LS. Robotics and its applications in stereotactic radiosurgery. Neurosurg Focus 2007;23(6):E6.

    PubMed  Google Scholar 

  4. Betti O, Derechinsky V. Hyperselective encephalic irradiation with a linear accelerator. Acta Neurochir Suppl 1984;33:385–90.

    Google Scholar 

  5. Betti OO, Derechinsky VE. Irradiacion hiperselectiva encefalica con acelerador lineal: Unidad Multihaz Jean Talairach. Prensa Médica Argentina 1983;70:102–7.

    Google Scholar 

  6. Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985;16:154–60.

    PubMed  CAS  Google Scholar 

  7. Niranjan A, Gobbel GT, Kondziolka D, Lunsford LD. Heritage of radiosurgical research, current trends and future perspective. Prog Neurol Surg 2007;20:359–74.

    PubMed  Google Scholar 

  8. Hoh DJ, Liu CY, Pagnini PG, Yu C, Wang MY, Apuzzo ML. Chained lightning, part I: Exploitation of energy and radiobiological principles for therapeutic purposes. Neurosurgery 2007;61(1):14–27.

    PubMed  Google Scholar 

  9. Winston KR, Lutz W. Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery 1988;22(3):454–64.

    PubMed  CAS  Google Scholar 

  10. Maciunas RJ. Computer-assisted neurosurgery. Clin Neurosurg 2006;53:267–71.

    PubMed  Google Scholar 

  11. Linskey ME. The changing role of stereotaxis in surgical neuro-oncology. J Neurooncol 2004;69(1–3):35–54.

    PubMed  Google Scholar 

  12. Housepian EM. Stereotactic surgery: the early years. Neurosurgery 2004;55(5):1210–4.

    PubMed  Google Scholar 

  13. Barnett GH, Linskey ME, Adler JR, Cozzens JW, Friedman WA, Heilbrun MP, et al. American Association of Neurological Surgeons; Congress of Neurolofical Surgeons Washington Committee Stereotactic Radiosurgery Task Force. Stereotactic radiosurgery–an organized neurosurgery-sanctioned definition. J Neurosurg 2007;106(1):1–5.

    PubMed  Google Scholar 

  14. Niranjan A, Gobbel G, Kondziolka D, Lunsford D. Radiosurgical research: what has it told us? what do we still need to know?. Tech Neurosurg 2003;9(3):242–50.

    Google Scholar 

  15. Huntzinger C, Friedman W, Bova F, Fox T, Bouchet L, Boeh L. Trilogy image-guided stereotactic radiosurgery. Med Dosim 2007;32(2):121–33.

    PubMed  Google Scholar 

  16. Shaw E, Kline R, Gillin M. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 1993;27:1231–9.

    PubMed  CAS  Google Scholar 

  17. Chen JC, Girvigian MR. Stereotactic radiosurgery: instrumentation and theoretical aspects – part 1. Permanente J 2005;9(4).

    Google Scholar 

  18. Schweikard A, Schlaefer A, Adler JR. Resampling: an optimization method for inverse planning in robotic radiosurgery. Med Phys 2006;33(11):4005–11.

    PubMed  Google Scholar 

  19. Hoh DJ, Liu CY, Pagnini PG, Yu C, Wang MY, Apuzzo ML. Chained lightning, part I: Exploitation of energy and radiobiological principles for therapeutic purposes. Neurosurgery 2007;61(1):14–27.

    PubMed  Google Scholar 

  20. Suh JH, Saxton JP. Conventional radiation therapy for skull base tumors: an overview. Neurosurg Clin N Am 2000;11(4):575–86.

    PubMed  CAS  Google Scholar 

  21. Andrews DW, Bednarz G, Evans JJ, Downes B. A review of 3 current radiosurgery systems. Surg Neurol 2006;66(6):559–64.

    PubMed  Google Scholar 

  22. Carol M, Grant WH, III, Pavord D, Eddy P, Targovnik HS, Butler B, et al. Initial clinical experience with the Peacock intensity modulation of a 3-D conformal radiation therapy system. Stereotact Funct Neurosurg 1996;66(1–3):30–4.

    PubMed  CAS  Google Scholar 

  23. Alexander III, E Loeffler JS. Radiosurgery using a modified linear accelerator. Neurosurg Clin N Am 1992;3:167–90.

    PubMed  Google Scholar 

  24. Gerbi BJ, Higgins PD, Cho KH, Hall WA. Linac-based stereotactic radiosurgery for treatment of trigeminal neuralgia. J Appl Clin Med Phys 2004;5(3):80–92.

    PubMed  Google Scholar 

  25. Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 1997;37(3):679–88.

    PubMed  CAS  Google Scholar 

  26. Urie MM, Lo YC, Litofsky S, FitzGerald TJ. Miniature multileaf collimator as an alternative to traditional circular collimators for stereotactic radiosurgery and stereotactic radiotherapy. Stereotact Funct Neurosurg 2001;76(1):47–62.

    PubMed  CAS  Google Scholar 

  27. Hillard VH, Shih LL, Chin S, Moorthy CR, Benzil DL. Safety of multiple stereotactic radiosurgery treatments for multiple brain lesions. J Neurooncol 2003;63(3):271–8.

    PubMed  Google Scholar 

  28. Plowman PN Doughty D. Stereotactic radiosurgery, X: clinical isodosimetry of gamma knife versus linear accelerator X-knife for pituitary and acoustic tumours. Clin Oncol (R Coll Radiol) 1999;11:(5)321–9.

    CAS  Google Scholar 

  29. McClelland III, S Gerbi BJ, Higgins PD, Orner JB, Hall WA. Safety and efficacy of fractionated stereotactic radiotherapy for acoustic neuromas. J Neurooncol 2008;86(2):191–4.

    PubMed  Google Scholar 

  30. Niranjan A, Lunsford LD. Radiosurgery: where we were, are, and may be in the third millennium. Neurosurgery 2000;46(3):531–43.

    PubMed  CAS  Google Scholar 

  31. Wurm RE, Erbel S, Schwenkert I, Gum F, Agaoglu D, Schild R, et al. Novalis frameless image-guided noninvasive radiosurgery: initial experience. Neurosurgery 2008;62(5 Suppl):A11–18.

    PubMed  Google Scholar 

  32. Jensen RL, Wendland MM, Chern SS, Shrieve DC. Novalis intensity-modulated radiosurgery: methods for pretreatment planning. Neurosurgery 2008;62(5 Suppl):A2–9; discussion A9-10.

    PubMed  Google Scholar 

  33. IGRT Adaptive Gating, radiotherapy solutions.

    Google Scholar 

  34. Yan H, Yin FF, Kim JH. A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 2003;30(12):3052–60.

    PubMed  Google Scholar 

  35. Pedroso AG, De Salles AA, Tajik K, Golish R, Smith Z, Frighetto L, et al. Novalis Shaped Beam Radiosurgery of arteriovenous malformations. Neurosurg 2004;101 Suppl 3:425–34.

    Google Scholar 

  36. Teh BS, Paulino AC, Lu HH, Chiu JK, Richardson S, Chiang S, et al. Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat 2007;6(4):347–54.

    PubMed  Google Scholar 

  37. Chen JC, Girvigian M, Greathouse H, Miller M, Rahimian J. Treatment of trigeminal neuralgia with linear accelerator radiosurgery: initial results. J Neurosurg 2004;101 Suppl 3:346–50.

    PubMed  Google Scholar 

  38. Rahimian J, Chen JC, Rao AA, Girvigian MR, Miller MJ, Greathouse HE. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg 2004;101 Suppl 3:351–5.

    PubMed  Google Scholar 

  39. Frighetto L, De Salles A, Medin P, Selch M. Shaped beam stereotactic radiosurgery and radiotherapy for the brain and spine. Techniques in Neurosurgery. Radiosurgery 2003;9(3):204–17.

    Google Scholar 

  40. Huntzinger C, Friedman W, Bova F, Fox T, Bouchet L, Boeh L. Trilogy image-guided stereotactic radiosurgery. Med Dosim 2007;32(2):121–33.

    PubMed  Google Scholar 

  41. Fan J, Paskalev K, Li J, Wang L, Chen L, Price R, et al. MO-D-AUD-07: determination of output Ffactors for stereotactic radiosurgery beams by Monte Carlo and measurements. Med Phys 34(6):2522.

    Google Scholar 

  42. VanderSpek L, Wang J, Alksne J, Murphy K. Single fraction, single isocenter Intensity Modulated Radiosurgery (IMRS) for multiple Brain netastases: dosimetric and early clinical experience. Int J Radiat Oncol Biol Phys 2007;69(3):S265.

    Google Scholar 

  43. Mamalui-Hunter M, Drzymala R, Willcut V, Santanam L, Low D. TH-D-AUD-08: Automated stereotactic radiosurgery quality assurance using a portal imager. Med Phys 2007;34(6):2642.

    Google Scholar 

  44. Shiu AS, Kooy HM, Ewton JR, Tung SS, Wong J, Antes K, et al. Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 1997;37(3):679–88.

    PubMed  CAS  Google Scholar 

  45. Yartsev S, Kron T, Van Dyk J. Tomotherapy as a tool in image-guided radiation therapy (IGRT): current clinical experience and outcomes. Biomed Imaging Interv J 2007;3(1):e16.

    Google Scholar 

  46. Mackie TR. History of tomotherapy? Phys Med Biol 2006;51(13):R427–53.

    PubMed  CAS  Google Scholar 

  47. Bauman G, Yartsev S, Coad T, Fisher B, Kron T. Helical tomotherapy for craniospinal radiation. Br J Radiol 2005; 78(930):548–52.

    PubMed  CAS  Google Scholar 

  48. Tomotherapy Product Information.

    Google Scholar 

  49. Mackie R, Balog J, Ruchala K, Shepard D, Aldridge S, Fitchard E, et al. Tomotherapy. Semin Radiat Oncol 1999;9:108–17.

    PubMed  CAS  Google Scholar 

  50. Baisden JM, Benedict SH, Sheng K, Read PW, Larner JM. Helical TomoTherapy in the treatment of central nervous system metastasis. Neurosurg Focus 2007;22(3):E8.

    PubMed  Google Scholar 

  51. Welsh JS, Lock M, Harari PM, Tomé WA, Fowler J, Mackie TR, et al. Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy. Technol Cancer Res Treat 2006;5(5):465–79.

    PubMed  Google Scholar 

  52. Kim B, Soisson ET, Duma C, Chen P, Hafer R, Cox C, et al. Image-guided helical Tomotherapy for treatment of spine tumors. Clin Neurol Neurosurg 2008;110(4):357–62.

    PubMed  Google Scholar 

  53. Balog J, Soisson E. Helical tomotherapy quality assurance. Int J Radiat Oncol Biol Phys 2008;71(1 Suppl):S113–7.

    PubMed  Google Scholar 

  54. Yartsev S, Kron T, Cozzi L, Fogliata A, Bauman G. Tomotherapy planning of small brain tumours. Radiother Oncol 2005;74(1):49–52.

    PubMed  Google Scholar 

  55. Shi C, Peñagarícano J, Papanikolaou N. Comparison of IMRT treatment plans between linac and helical tomotherapy based on integral dose and inhomogeneity index. Med Dosim 2008;33(3):215–21.

    PubMed  Google Scholar 

  56. Hansen EK, Bucci MK, Quivey JM, et al. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer Int J Radiat Oncol Biol Phys 2006;64(2):355–62.

    PubMed  Google Scholar 

  57. Peñagarícano JA, Yan Y, Shi C, Linskey ME, Ratanatharathorn V. Dosimetric comparison of Helical Tomotherapy and Gamma Knife Stereotactic Radiosurgery for single brain metastasis. Radiat Oncol 2006;1:26.

    PubMed  Google Scholar 

  58. Zhang T. Respiratory gating and 4-D tomotherapy. Med Phys 2004;31:3529.

    Google Scholar 

  59. Gutiérrez AN, Westerly DC, Tomé WA, Jaradat HA, Mackie TR, Bentzen SM, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys 2007;69(2):589–97.

    PubMed  Google Scholar 

  60. Welsh JS, Mehta MP, Mackie TR, Orton N, Jaradat H, Khuntia D, et al. Helical tomotherapy as a means of delivering scalp-sparing whole brain radiation therapy. Technol Cancer Res Treat 2005;4(6):661–2.

    PubMed  Google Scholar 

  61. Roberge D, Parker W, Niazi TM, Oliveres M. Treating the contents and not the container: Dosimetric study of hair-sparing Whole Brain Intensity Modulated Radiation Therapy. Technol Cancer Res Treat 2005;4:567–70.

    PubMed  Google Scholar 

  62. Adler JR,Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery 1999;44:1299–307.

    PubMed  Google Scholar 

  63. Gildenberg PL, Woo SY. Multimodality program involving stereotactic surgery in brain tumor management. Stereotact Funct Neurosurg 2000;75(2–3):147–52.

    PubMed  CAS  Google Scholar 

  64. Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 2003;52:140–7.

    PubMed  Google Scholar 

  65. Gerszten PC, Ozhasoglu C, Burton SA, Vogel W, Atkins B, Kalnicki S, Welch WC. Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg 2003;81(1–4):84–9.

    PubMed  Google Scholar 

  66. Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, Welch WC. CyberKnife frameless single-fraction stereotactic radiosurgery for benign tumors of the spine. Neurosurg Focus 2003;14(5):e16.

    PubMed  Google Scholar 

  67. Hara W, Soltys SG, Gibbs IC. CyberKnife robotic radiosurgery system for tumor treatment. Expert Rev Anticancer Ther 2007;7(11):1507–15.

    PubMed  Google Scholar 

  68. Yu C, Gabor J, Apuzzo M, Zbigniew P. Dosimetric comparison of CyberKnife with other radiosurgical modalities for an ellipsoidal target. Neurosurgery 2003;53(5):1155–63.

    PubMed  Google Scholar 

  69. Romanelli P, Chang SD, Koong A, Adler John R. Extracranial radiosurgery using the CyberKnife. Techniques in neurosurgery. Radiosurgery 2003;9(3):226–31.

    Google Scholar 

  70. Collins SP, Coppa ND, Zhang Y, Collins BT, McRae DA, Jean WC. CyberKnife radiosurgery in the treatment of complex skull base tumors: analysis of treatment planning parameters. Radiat Oncol 2006;1:46.

    PubMed  Google Scholar 

  71. Muacevic A, Wowra B. Cyberknife radiosurgery – overview. European neurological disease. Touch briefings; 2007.

    Google Scholar 

  72. Giller CA, Berger BD, Gilio JP, Delp JL, Gall KP, Weprin B, et al. Feasibility of radiosurgery for malignant brain tumors in infants by use of image-guided robotic radiosurgery: preliminary report. Neurosurgery 2004;55(4):916–24.

    PubMed  Google Scholar 

  73. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997;69:124–8.

    PubMed  Google Scholar 

  74. Gibbs IC. Frameless image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system. Cancer Radiother 2006;10(5):283–7.

    PubMed  CAS  Google Scholar 

  75. Hara W, Soltys SG, Gibbs IC. CyberKnife robotic radiosurgery system for tumor treatment. Expert Rev Anticancer Ther 2007;7(11):1507–15.

    PubMed  Google Scholar 

  76. Pawlicki T, Cotrutz C, King C. Prostate cancer therapy with stereotactic body radiation therapy. Front Radiat Ther Oncol 2007;40:395–406.

    PubMed  Google Scholar 

  77. Romanelli P, Schweikard A, Schlaefer A, Adler J. Computer aided robotic radiosurgery. Comput Aided Surg 2006;11(4):161–74.

    PubMed  Google Scholar 

  78. Chang SD, Poen J, Hancock SL, Martin DP, Adler JR, Jr. Acute hearing loss following fractionated stereotactic radiosurgery for acoustic neuroma: report of two cases. J Neurosurg 1998;89:321–5.

    PubMed  CAS  Google Scholar 

  79. Chang SD, Adler JR. Robotics and radiosurgery-the cyberknife. Stereotact Funct Neurosurg 2001;76(3–4):204–8.

    PubMed  CAS  Google Scholar 

  80. Shimamoto S, Inoue T, Shiomi H, Sumida I, Yamada Y, Tanaka E, et al. CyberKnife stereotactic irradiation for metastatic brain tumors. Radiat Med 2002;20(6):299–304.

    PubMed  Google Scholar 

  81. Villavicencio AT, Lim M, Burneikiene S, Romanelli P, Adler JR, McNeely L, et al. Cyberknife radiosurgery for trigeminal neuralgia treatment: a preliminary multicenter experience. Neurosurgery 2008;62(3):647–55.

    PubMed  Google Scholar 

  82. Chang SD, Gibbs IC, Sakamoto GT, Lee E, Oyelese A, Adler JR Jr. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery 2005;56(6):1254–61.

    PubMed  Google Scholar 

  83. Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD. Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 2006;59(2):244–54.

    PubMed  Google Scholar 

  84. Hamilton AJ, Lulu BA, Fosmire H, Stea B, Cassady JR. Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 1995;36(2):311–9.

    PubMed  CAS  Google Scholar 

  85. Yu C, Apuzzo MLJ, Zee CS, Petrovich Z. A phantom study of the geometric accuracy of computed tomographic and magnetic resonance imaging svereotactic localization with the Leksell stereotactic system. Neurosurgery 2001;48:1092–9.

    PubMed  CAS  Google Scholar 

  86. Drzymala RE, Mutic S. Stereotactic imaging quality assurance using an anthropomorphic phantom. Comput Aided Surg 1999;4:248–55.

    PubMed  CAS  Google Scholar 

  87. Maciunas RJ, Galloway RL Jr, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery 1994;35(4):682–94.

    PubMed  CAS  Google Scholar 

  88. Serago CF, Lewin AA, Houdek PV, Gonzalez-Arias S, Hartmann GH, Abitbol AA, et al. Stereotactic target point verification of an X ray and CT localizer. Int J Radiat Oncol Biol Phys 1991;20:517–23.

    PubMed  CAS  Google Scholar 

  89. Lutz W, Winston KR, Maleki N. A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988;14:373–81.

    PubMed  CAS  Google Scholar 

  90. Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, et al. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery 2007;60(2 Suppl 1):147–56.

    Google Scholar 

  91. Gerszten PC, Welch WC. Cyberknife radiosurgery for metastatic spine tumors. Neurosurg Clin N Am 2004;15(4):491–501.

    PubMed  Google Scholar 

  92. Gerszten PC, Ozhasoglu C, Burton SA, Welch WC, Vogel WJ, Atkins BA, et al. CyberKnife frameless single-fraction stereotactic radiosurgery for tumors of the sacrum. Neurosurg Focus 2003;15(2):E7.

    PubMed  Google Scholar 

  93. Lindquist C, Paddick I. The Leksell Gamma Knife Perfexion and comparisons with its predecessors. Neurosurgery 2007;61(3 Suppl):130–40.

    PubMed  Google Scholar 

  94. Regis J, Tamura M, Guillot C, Muracciolle X, Nagaje M, Porcheron D. Radiosurgery. Radiosurgery of the head and neck with the world’s first fully robotized 192 Cobalt-60 source Leksell Gamma Knife Perfexion in clinical use. www.elekta.com/healthcare-international-gamma-knife-surgery.php

  95. Levy P, Schulte RWM, Slater JD, Miller DW, Slater JM. Stereotactic radiosurgery. The role of charged particles. Acta oncologica 1999;38(2):165–9.

    PubMed  CAS  Google Scholar 

  96. Chen CC, Chapman P, Petit J, Loeffler J. Proton radiosurgery in neurosurgery. Neurosurg Focus 2007;23(6):E5.

    PubMed  Google Scholar 

  97. Suit H, Goldberg S, Niemierko A, Trofimov A, Adams J, Paganetti H, et al. Proton beams to replace photon beams in radical dose treatments. Acta Oncol 2003;42(8):800–8.

    PubMed  Google Scholar 

  98. Schulz-Ertner D, Tsujii H. Particle radiation therapy using proton and heavier ion beams. J Clin Oncol;2007;25(8):953–64.

    PubMed  Google Scholar 

  99. Schulz-Ertner D, Karger CP, Feuerhake A, Nikoghosyan A, Combs SE, Jäkel O, et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys 2007;68(2):449–57.

    PubMed  Google Scholar 

  100. Levin WP, Kooy H, Loeffler JS, DeLaney TF. Proton beam therapy. Br J Cancer 2005;93(8):849–54.

    PubMed  CAS  Google Scholar 

  101. Hug EB. Protons versus photons: a status assessment at the beginning of the 21st Century. Radiother Oncol 2004;73 Suppl 2:S35–7.

    PubMed  Google Scholar 

  102. Weber DC, Chan AW, Bussiere MR, Harsh GR, Ancukiewicz M, Barker FG II, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery 2003;53:577–88.

    PubMed  Google Scholar 

  103. Harsh GR IV, Thornton AF, Chapman PH, Bussiere MR, Rabinov JD, Loeffler JS. Proton beam stereotactic radiosurgery of vestibular schwannomas. Int J Radiat Oncol Biol Phys 2002;54:35–44.

    PubMed  Google Scholar 

  104. Hug EB. Review of skull base chordomas: prognostic factors and long-term results of proton-beam radiotherapy. Neurosurg Focus 2001;10(3):E11.

    PubMed  CAS  Google Scholar 

  105. Pommier P, Liebsch NJ, Deschler DG, Lin DT, McIntyre JF, Barker FG 2nd, et al. Proton beam radiation therapy for skull base adenoid cystic carcinoma. Arch Otolaryngol Head Neck Surg 2006;132(11):1242–9.

    PubMed  Google Scholar 

  106. Hug EB, Sweeney RA, Nurre PM, Holloway KC, Slater JD, Munzenrider JE. Proton radiotherapy in management of pediatric base of skull tumors. Int J Radiat Oncol Biol Phys 2002;52(4):1017–24.

    PubMed  Google Scholar 

  107. Hug E, Slater J. Proton radiation therapy for chordomas and chondrosarcomas of the skull base. Neurosurg Clin North Am 2000;11:627–38.

    CAS  Google Scholar 

  108. Bowyer J, Natha S, Marsh I, Foy P. Visual complications of proton beam therapy for clival chordoma. Eye 2003;17(3):318–23.

    PubMed  CAS  Google Scholar 

  109. St Clair WH, Adams JA, Bues M, Fullerton BC, Shell S, Kooy HM, et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys 2004;58:727–34.

    PubMed  CAS  Google Scholar 

  110. Tsujii H, Mizoe J, Kamada T, Baba M, Tsuji H, Kato H, et al. Clinical results of carbon ion radiotherapy at NIRS. J Radiat Res (Tokyo) 2007;48 Suppl A:A1–A13.

    CAS  Google Scholar 

  111. Mizoe JE, Tsujii H, Hasegawa A, Yanagi T, Takagi R, Kamada T, et al. Organizing Committee of the Central Nervous System Tumor Working Group. Phase I/II clinical trial of carbon ion radiotherapy for malignant gliomas: combined X-ray radiotherapy, chemotherapy, and carbon ion radiotherapy. Int J Radiat Oncol Biol Phys 2007; 69(2):390–6.

    PubMed  CAS  Google Scholar 

  112. Tsujii H, Mizoe JE, Kamada T, Baba M, Kato S, Kato H, et al. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother Oncol 2004;73 Suppl 2:S41–9.

    PubMed  Google Scholar 

  113. Munzenrider JE, Liebsch NJ. Proton therapy for tumors of the skull base. Strahlenther Onkol 1999;175 Suppl 2:57–63.

    PubMed  Google Scholar 

  114. Debus J, Schulz-Ertner D, Schad L, Essig M, Rhein B, Thillmann CO, et al. Stereotactic fractionated radiotherapy for chordomas and chondrosarcomas of the skull base. Int J Radiat Oncol Biol Phys 2000;47(3):591–6.

    PubMed  CAS  Google Scholar 

  115. Caporaso GJ, Mackie TR, Sampayan S, Chen YJ, Blackfield D, Harris J, et al. A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator. Phys Med 2008;24(2):98–101.

    PubMed  CAS  Google Scholar 

  116. Dietmar G, Bogner J, Dieckmann K, Pötter R. Is mask-based stereotactic head-and-neck fixation as precise as stereotactic head fixation for precision radiotherapy? Int J Radiat Oncol Biol Phys 2006;66(4Suppl 1):S61–6.

    Google Scholar 

  117. Grabenbauer GG, Ernst-Stecken A, Schneider F, Lambrecht U, Ganslandt O. Radiosurgery of functioning pituitary adenomas: comparison of different treatment techniques including dynamic and conformal arcs, shaped beams, and IMRT. Int J Radiat Oncol Biol Phys 2006;66(4 Suppl 1):S33–9.

    Google Scholar 

  118. Grzadziel A, Grosu A, Kneschaurek P. Three-dimensional conformal versus intensity-modulated radiotherapy dose planning in stereotactic radiotherapy: application of standard quality parameters for plan evaluation. Int J Radiat Oncol Biol Phys 2006;66(4 Suppl 1):S87–94.

    Google Scholar 

  119. Wurm R, Okunieff P. Intracranial and extracranial stereotactic radiosurgery and radiotherapy. Int J Radiat Oncol Biol Phys 2006;66(4 Suppl 1):S1–2.

    Google Scholar 

  120. Gerszten PC, Burton SA, Ozhasoglu C, McCue KJ, Quinn AE. Radiosurgery for benign intradural spinal tumors. Neurosurgery 2008;62(4):887–95; discussion 895-6.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schulder, M. (2009). Overview of Radiosurgery Technology. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics