Skip to main content

Automatic Detection of the Back Valley on Scoliotic Trunk Using Polygonal Surface Curvature

  • Conference paper
Image Analysis and Recognition (ICIAR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5112))

Included in the following conference series:

Abstract

The objective of this paper is to automatically detect the back valley on a polygonal mesh of the human trunk surface. A 3D camera system based on the projection of a structured light is used for the acquisition of the whole trunk of scoliotic patients. A quadratic fitting method is used to calculate the principal curvatures for each vertex. It was determined that 3 levels of neighbors were sufficient to detect the back valley. The proposed method was evaluated on a set of 61 surface trunks of scoliotic patients. The results were validated by two orthopedic surgeons and were estimated to 84% of success in the automatic detection of the back valley. The proposed method is reproducible and could be useful for clinical assessment of scoliosis severity and a non-invasive progression follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergeron, C., Cheriet, F., Ronsky, J., Zernicke, R., Labelle, H.: Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression. Engineering Applications of Artificial Intelligence 18(8), 973–983 (2005)

    Article  Google Scholar 

  2. Jaremko, J., Delorme, S., Dansereau, J., et al.: Use of neural networks to correlate spine and rib deformity in scoliosis. Computer Methods in Biomechanics and Biomedical Engineering 3(3), 203–213 (2000)

    Article  Google Scholar 

  3. Pazos, V., Cheriet, F., Dansereau, J., et al.: Reliability of trunk shape measurements based on 3-d surface reconstructions. European Spine Journal (2007)

    Google Scholar 

  4. Thulbourne, T., Gillespie, R.: The rib hump in idiopathic scoliosis: measurement, analysis and response to treatment. J. Bone Joint Surg. 58, 64–71 (1976)

    Google Scholar 

  5. Cheriet, F., Laporte, C., Kadoury, S., Labelle, H., Dansereau, J.: A novel system for the 3-d reconstruction of the human spine and rib cage from biplanar x-ray images. IEEE Transactions on Biomedical Engineering 54(7), 1356–1358 (2007)

    Article  Google Scholar 

  6. Frobin, W., Hierholzer, E.: Analysis of human back shape using surface curvatures. Journal of Biomechanics 15(5), 379–390 (1982)

    Article  Google Scholar 

  7. Drerup, B., Hierholzer, E.: Automatic localization of anatomical landmarks on the back surface and construction of a body-fixed coordinate system. Journal of Biomechanics 20(10), 961–970 (1987)

    Article  Google Scholar 

  8. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image and Vision Computing 10(8), 557–565 (1992)

    Article  Google Scholar 

  9. Liu, X., Kim, W., Drerup, B.: 3d characterization and localization of anatomical landmarks of the foot by fastscan. In: Real-Time Imaging, Imaging in Bioinformatics: Part III, pp. 217–228. Academic Press, London, NW1 7DX, United Kingdom (2004)

    Google Scholar 

  10. Kim, C.H., Kim, S.K.: Finding ridges and valleys in a discrete surface using a modified mls approximation. Computer Aided Design 38(2), 173–180 (2006)

    Article  Google Scholar 

  11. Gatzke, T., Grimm, C.: Estimating curvature on triangular meshes. Int. J. Shap. Model. 12(1), 1–29 (2006)

    Article  MATH  Google Scholar 

  12. Goldfeather, J., Interrante, V.: A novel cubic-order algorithm for approximating principal direction vectors. ACM Trans. Graph. 23(1), 45–63 (2004)

    Article  Google Scholar 

  13. Heckbert, P., Garland, M.: Optimal triangulation and quadric-based surface simplification. Comp. Geom. Th. Apps 14, 49–65 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Visualization and mathematics III, pp. 35–57. Springer, Heidelberg (2003)

    Google Scholar 

  15. Alboul, L., Brink, W., Rodrigues, M.: Mesh optimisation based on Willmore energy. In: 22nd European Workshop on Computational Geometry, March 2006, pp. 133–136 (2006)

    Google Scholar 

  16. Manole, C., Vallet, M.-G., Dompierre, J., Guibault, F.: Benchmarking second order derivatives recovery of a piecewise linear scalar field. In: Proceedings of the 17th IMACS World Congress Scientific Computation, Applied Mathematics and Simulation, Paris (2005)

    Google Scholar 

  17. Gatzke, T., Grimm, C.: Feature detection using curvature maps and the min-cut/max-flow algorithm. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS, vol. 4007, pp. 578–584. Springer, Heidelberg (2006)

    Google Scholar 

  18. Chen, L., Georganas, N.D.: An efficient and robust algorithm for 3D mesh segmentation. Multimedia Tools Application 29, 109–125 (2006)

    Article  Google Scholar 

  19. Thériault, J., Guibault, F., Vallet, M.-G., Cheriet, F.: On surface curvature approximations from a polygon mesh. In: 5th Curves and Surfaces Conference, Avignon, France (2007)

    Google Scholar 

  20. Meek, D.S., Walton, D.J.: On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comp.-Aided Geom. Design 17(6), 521–543 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, USA, pp. 902–907 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aurélio Campilho Mohamed Kamel

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thériault, J., Cheriet, F., Guibault, F. (2008). Automatic Detection of the Back Valley on Scoliotic Trunk Using Polygonal Surface Curvature. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2008. Lecture Notes in Computer Science, vol 5112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69812-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69812-8_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69811-1

  • Online ISBN: 978-3-540-69812-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics