Skip to main content

Nuclear Architecture

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Many important examples of epigenetic gene regulation involve interactions between loci on separate chromosomes. In this chapter we discuss the ways in which such interactions depend on the large scale structural context of the nucleus. Chromosomes are organized in a highly defined arrangement within the nucleus, as evidenced from a large number of structural studies in many different organisms (reviewed by Comings 1980; Marshall et al. 1997a). As a result of this organization, a particular genomic locus will tend to occupy a particular and reproducible spatial region within the nucleus. It has been demonstrated that interphase chromatin does not diffuse significantly over spatial scales larger than about 0.5 μm (Abney et al. 1997; Marshall et al. 1997b), so the only way that two loci could physically interact is if their positions within the nucleus are within 1 μm of each other. The relative proximity of any two loci, and hence their ability to interact with each other, is determined entirely by the nuclear architecture. Loci with similar positions in the nucleus will be able to interact. Indeed, their interactions will be facilitated because they will be maintained in close proximity throughout interphase, providing more opportunities to interact than if each was free to diffuse all throughout the nucleus. On the other hand, loci whose positions within the nucleus are far apart, will be prevented from interacting because they will never come into physical contact. Viewed in this way, the distance between two loci in the nucleus, as determined by the overall architectural arrangement of chromosomes, determines the relative concentration of the two loci. Thus, the large-scale three-dimensional structure of the nucleus is expected to exert a direct and powerful influence on which interactions between loci can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abney JR, Cutler B, Filbach ML, Axelrod D, Scalettar BA (1997) Chromatin dynamics in interphase nuclei and its implications for nuclear structure. J Cell Biol 137: 1459–1468

    Article  PubMed  CAS  Google Scholar 

  • Agard DA, Sedat JW (1983) Three-dimensional architecture of a polytene nucleus. Nature 302: 676–681

    Article  PubMed  CAS  Google Scholar 

  • Aramayo R, Metzenberg RL (1996) Meiotic transvection in fungi. Cell 86: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Arnoldus EP, Peters AC, Bots GT, Raap AK, van der Ploeg M (1989) Somatic pairing of chromosome I centromeres in interphase nuclei of human cerebellum. Hum Genet 83: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Baricheva EA, Berrios M, Bogachev SS, Borisevich IV, Lapik ER, Sharakhov IV, Stuurman N, Fisher PA (1996) DNA from Drosophila melanogaster beta-heterochromatin binds specifi- cally to nuclear lamins in vitro and the nuclear envelope in situ. Gene 171: 171–176

    Article  PubMed  CAS  Google Scholar 

  • Berezney R, Coffey D (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60: 1410–1419

    Article  PubMed  CAS  Google Scholar 

  • Bickmore WA, Oghene K (1996) Visualizing the spatial relationships between defined DNA sequences and the axial region of extracted metaphase chromosomes. Cell 84: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Billia F, De Boni U (1991) Localization of centromeric satellite and telomeric DNA sequences in dorsal root ganglion neurons in vitro. J Cell Sci 100: 219–226

    PubMed  CAS  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82: 8527–8529

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with ikaros complexes at centromeric heterochromatin. Cell 91: 845–854

    Article  PubMed  CAS  Google Scholar 

  • Capco DG, Wan KM, Penman S (1982) The nuclear matrix: three-dimensional architecture and protein composition. Cell 29: 847–858

    Article  PubMed  CAS  Google Scholar 

  • Chung HM, Shea C, Fields S, Taub RN, van der Ploeg LHT, Tse DB (1990) Architectural organization in the interphase nucleus of the protozoan Trypanosoma brucei: location of telomeres and mini-chromosomes. EMBO J 9: 2611–2619

    PubMed  CAS  Google Scholar 

  • Coen ES, Carpenter R (1988) A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homolog in Antirrhinum majus. EMBO J 7: 877–883

    PubMed  CAS  Google Scholar 

  • Comings DE (1980) Arrangement of chromatin in the nucleus. Hum Genet 53: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, Zorn C (1982) Rabl’s model of the interphase chromosome arrangement tested in chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60: 46–56

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schroeck E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harbor Symp Quant Biol 58: 777–792

    Article  PubMed  CAS  Google Scholar 

  • Csink A, Henikoff S (1996) Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature 381: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Davis I, Francis-Lang H, Ish-Horowicz D (1993) Mechanisms of intracellular transcript localization and export in early Drosophila embryos. Cold Spring Harbor Symp Quant Biol 58: 793–798

    Article  PubMed  CAS  Google Scholar 

  • Dernburg AF, Broman KW, Fung JC, Marshall WF, Philips J, Agard DA, Sedat JW (1996) Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–759

    Article  PubMed  CAS  Google Scholar 

  • Dreesen TD, Henikoff S, Loughney K (1991) A pairing-sensitive element that mediates transinactivation is associated with the Drosophila brown gene. Gen Dev 5: 331–340

    Article  CAS  Google Scholar 

  • Dupraw EJ (1965) The organization of nuclei and chromosomes in honey bee embryonic cells. Proc Natl Acad Sci USA 53: 161–168

    Article  PubMed  CAS  Google Scholar 

  • Eils R, Dietzel S, Bertin E, Schroeck E, Speicher MR, Ried T, Robert-Nicoud M, Cremer C, Cremer T (1996) Three-dimensional reconstruction of painted human interphase chromosomes: active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J Cell Biol 135: 1427–1440

    Article  PubMed  CAS  Google Scholar 

  • Ellison JR, Howard GC (1981) Non-random position of the A-T rich DNA sequences in early embryos of Drosophila virilis. Chromosoma 83: 555–561

    Article  PubMed  CAS  Google Scholar 

  • Ferguson M, Ward DC (1992) Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101: 96–106

    Article  Google Scholar 

  • Foe VE, Alberts BM (1985) Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J Cell Biol 100: 1623–1636

    Article  PubMed  CAS  Google Scholar 

  • Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 46: 521–530

    Google Scholar 

  • Funabiki H, Haga I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976

    Article  PubMed  CAS  Google Scholar 

  • Fung JC, Marshall WF, Dernburg AF, Agard DA, Sedat JW (1998) Homologous chromosome pairing in Drosophila melanogaster proceeds through multiple, independent initiations. J Cell Biol 141: 5–20

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Gemkow MJ, Buchenau P, Arndt-Jovin DJ (1996) FISH in whole-mount Drosophila embryos. RNA: activation of a transcriptional locus, DNA: gene architecture and expression. Bioimaging 4: 107–120

    Article  CAS  Google Scholar 

  • Geyer PK, Green MM, Corces VG (1990) Tissue-specific transcriptional enhancers may act in trans on the gene located in the homologous chromosome: the molecular basis of transvection in Drosophila. EMBO J 9: 2247–2256

    PubMed  CAS  Google Scholar 

  • Glass CA, Glass JR, Taniura H, Hasel KW, Blevitt JM, Gerace L (1993) The alpha-helical rod domain of human lamins A and C contains a chromatin binding site. EMBO J 12: 4413–4424

    PubMed  CAS  Google Scholar 

  • Goldsborough AS, Kornberg TB (1996) Reduction of transcription by homologue asynapsis in Drosophila imaginal discs. Nature 381: 807–810

    Article  PubMed  CAS  Google Scholar 

  • Golic MM, Golic KG (1996) A quantitative measure of the mitotic pairing of alleles in Drosophila melanogaster and the influence of structural heterozygosity. Genetics 143: 385–400

    PubMed  CAS  Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125: 517–530

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena S, Heddle E, Rykowski M (1995) `Chromosomal puffing’ in diploid nuclei of Drosophila melanogaster. J Cell Sci 108:1863–1872

    Google Scholar 

  • Haaf T, Ward DC (1995) Rabl orientation of CENP-B box sequences in Tupaia belangeri fibroblasts. Cyt Cell Genet 70: 258–262

    Article  CAS  Google Scholar 

  • Henikoff S (1990) Position-effect variegation after 60 years. Trends Genet 6: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (1994) A reconsideration of the mechanism of position effect. Genetics 138: 1–5

    PubMed  CAS  Google Scholar 

  • Henikoff S, Jackson JM, Talbert PB (1995) Distance and pairing effects on the brownDom1nant heterochromatic element in Drosophila. Genetics 140: 1007–1017

    PubMed  CAS  Google Scholar 

  • Hilliker AJ (1986) Assaying chromosome arrangement in embryonic interphase nuclei of Drosophila melanogaster by radiation induced interchanges. Genet Res 47: 13–18

    Article  Google Scholar 

  • Hiraoka Y, Agard DA, Sedat JW (1990a) Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos. J Cell Biol 111: 2815–2828

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Rykowski MC, Lefstin JA, Agard DA, Sedat JW (1990b) Three-dimensional organization of chromosomes studied by in situ hybridization and optical sectioning microscopy. Proc Society of Photo-optical Instrumentation Engineers 1205: 11–19

    Google Scholar 

  • Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120: 591–600

    Article  PubMed  CAS  Google Scholar 

  • Hoefers C, Baumann P, Hummer G, Jovin TM, Arndt-Jovin DJ (1993) The localization of chromosome domains in human interphase nuclei. Three-dimensional distance determinations of fluorescence in situ hybridization signals from confocal laser scanning microscopy. Bioimaging 1: 96–106

    Google Scholar 

  • Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H, Sedat JW (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol 102: 112–123

    Article  PubMed  CAS  Google Scholar 

  • Hutchison N, Weintraub H (1985) Localization of DNAase I-sensitive sequences to specific regions of interphase nuclei. Cell 43: 471–482

    Article  PubMed  CAS  Google Scholar 

  • Jack JW, Judd BH (1979) Allelic pairing and gene regulation: a model for the zeste-white interaction in Drosophila melanogaster. Proc Natl Acad Sci USA 76: 1368–1372

    Article  PubMed  CAS  Google Scholar 

  • James TC, Elgin SCR (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6: 3862–3872

    PubMed  CAS  Google Scholar 

  • Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, Nicholls RD, Cedar H (1993) Allele-specific replication timing of imprinted gene regions. Nature 364: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Lampel S, Nickolenko JE, Bradl J, Brenner A, Zirbel RM, Cremer T, Lichter P (1996) Active and inactive genes localize preferentially in the periphery of chromosome territories. J Cell Biol 135: 1195–1205

    Article  PubMed  CAS  Google Scholar 

  • LaSalle JM, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz E, Hareven D (1982) Heterochromatin markers: arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster. Chromosoma 86: 443–455

    Article  PubMed  CAS  Google Scholar 

  • Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–770

    Article  PubMed  CAS  Google Scholar 

  • Loidl J, Langer H (1993) Evaluation of models of homologue search with respect to their efficiency on meiotic pairing. Heredity 71: 342–351

    Article  PubMed  Google Scholar 

  • Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R (1994) Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 14: 6297–6305

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L, Borden J (1988) Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma 96: 396–410

    Article  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7: 825–842

    PubMed  CAS  Google Scholar 

  • Marshall WF, Fung JC, Sedat JW (1997a) Deconstructing the nucleus: global architecture from local interactions. Curr Op Gen Dev 7: 259–263

    Article  CAS  Google Scholar 

  • Marshall WF, Straight AF, Marko JF, Dernburg AF, Swedlow J, Belmont A, Murray AW, Agard DA, Sedat JW (1997b) Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol 7: 930–939

    Article  PubMed  CAS  Google Scholar 

  • Metz CW (1916) Chromosome studies on the Diptera. II. The paired association of chromosomes in the Diptera, and its significance. J Exp Zool 21: 213–279

    Article  Google Scholar 

  • Murray AB, Davies HG (1979) Three-dimensional reconstruction of the chromatin bodies in the nuclei of mature erythrocytes from the newt Triturus cristatus: the number of nuclear envelope-attachment sites. J Cell Sci 35: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Nagele R, Freeman T, McMorrow L, Lee HY (1995) Precise spatial positioning of chromosomes during prometaphase: evidence for chromosomal order. Science 270: 1831–1835

    Article  PubMed  CAS  Google Scholar 

  • Oegema K, Marshall WF, Sedat JW, Alberts BM (1997) Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP190. J Cell Sci 110: 1573–1583

    PubMed  CAS  Google Scholar 

  • Quick P (1980) Junctions of polytene chromosomes and the inner nuclear membrane. Experientia 36: 456–457

    Article  Google Scholar 

  • Saitoh Y, Laemmli UK (1994) Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 76: 609–622

    Article  PubMed  CAS  Google Scholar 

  • Schardin M, Cremer T, Hager HD, Lang M (1985) Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71: 281–287

    Article  PubMed  CAS  Google Scholar 

  • Slatis HM (1955) A reconsideration of the brown-dominant position effect. Genetics 40:246–251 Stack SM, Brown DB, Dewey WC (1977) Visualization of interphase chromosomes. J Cell Sci 26: 281–299

    Google Scholar 

  • Sperling K, Luedtke EK (1981) Arrangement of prematurely condensed chromosomes in cultured cells and lymphocytes of the Indian muntjac. Chromosoma 83: 541–553

    Article  PubMed  CAS  Google Scholar 

  • Sukegawa J, Blobel G (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, LeCiel CD, Henikoff S (1994) Modification of the Drosophila heterochromatic mutation browne’n’“a”` by linkage alterations. Genetics 136: 559–571

    PubMed  CAS  Google Scholar 

  • Taniura H, Glass C, Gerace L (1995) A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J Cell Biol 131: 33–44

    Article  PubMed  CAS  Google Scholar 

  • Tartof KD, Henikoff S (1991) Trans-sensing effects from Drosophila to humans. Cell 65: 201–203

    Article  PubMed  CAS  Google Scholar 

  • van Dekken H, van Rotterdam A, Jonker R, van der Voort HTM, Brakenhoff GJ, Baumann JGJ (1990) Confocal microscopy as a tool for the study of the intranuclear topography of chromosomes. J Microsc 158: 207–214

    Article  PubMed  Google Scholar 

  • Vourc’h C, Taruscio D, Boyle AL, Ward DC (1993) Cell cycle-dependent distribution of telomeres, centromeres, and chromosome-specific subsatellite domains in the interphase nucleus of mouse lymphocytes. Exp Cell Res 205: 142–151

    Article  PubMed  Google Scholar 

  • Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29: 577–605

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193: 848–856

    Article  PubMed  CAS  Google Scholar 

  • Wu CT, Goldberg ML (1989) The Drosophila zeste gene and transvection. Trends Genet 5: 189194

    Google Scholar 

  • Wu CT (1993) Transvection, nuclear structure, and chromatin proteins. J Cell Biol 120: 587–590

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Worman HJ (1996) Interactions between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 271: 14653–14656

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Simos G, Blobel G, Georgatos SD (1991) Binding of lamin A to polynucleosomes. J Biol Chem 266: 9211–9215

    PubMed  CAS  Google Scholar 

  • Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhron R, Bradbury EM (1995) Welldefined genome architecture in the human sperm nucleus. Chromosoma 103: 577–590

    Article  PubMed  CAS  Google Scholar 

  • Zirbel RM, Mathieu UR, Kurz A, Cremer T, Lichter P (1993) Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries. Chromosome Res 1: 92–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marshall, W.F., Sedat, J.W. (1999). Nuclear Architecture. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics