Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Phosphodiesterases (PDEs) represent important cornerstones of cGMP signaling in various tissues. Since the discovery of PDE activity in 1962, it has become clear that the functional characteristics of PDEs and their role in cyclic nucleotide signaling are fairly complex. On the one hand, members of the PDE family responsible for the hydrolysis of cGMP affect cellular responses by shaping cGMP signals derived from the activation of soluble cytosolic and/or membrane bound particulate guanylyl cyclases. Conversely, PDEs may function as downstream effectors in the cGMP signaling cascade. To make things even more sophisticated, cGMP modulates the activity of several PDEs either directly, by binding to a regulatory domain, or indirectly, through phosphorylation, and the result can be either inhibition or stimulation of the enzyme, depending on the subtype. Furthermore, cross-talk between cGMP and cAMP signaling is achieved by cGMP-dependent modulation of PDEs hydrolyzing cAMP and vice versa. Mammals posses at least 21 PDE genes and often express a set of PDEs in a tissue- and differentiation-dependent manner. Given these premises, it is still a challenging task to elucidate the physiological function(s) of individual PDE genes. The present chapter focuses on the role of PDEs as regulators of neuronal functions. Useful information regarding this topic has been gained by studying (1) the expression pattern of PDEs in the CNS, (2) the association of PDEs with specific macromolecular signaling complexes and (3) the phenotypes associated with mutations or ablation of PDE genes in man, mice and fruit flies, respectively. PDEs degrading cGMP and/or being regulated by cGMP have been implicated in cognition and learning, Parkinson's disease, attention deficit hyperactivity disorder, psychosis and depression. Correspondingly, modulators of PDEs have become attractive tools for treatment of these disorders of CNS function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostino PV, Plano SA, Golombek DA (2007) Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc Natl Acad Sci U S A 104:9834–9839

    PubMed  CAS  Google Scholar 

  • Ahmed T, Frey JU (2005) Phosphodiesterase 4B (PDE4B) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiation in vitro. Brain Res 1041:212–222

    PubMed  CAS  Google Scholar 

  • Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA (2001) Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068–9076

    PubMed  CAS  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    PubMed  CAS  Google Scholar 

  • Barad M, Bourtchouladze R, Winder DG, Golan H, Kandel E (1998) Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc Natl Acad Sci USA 95:15020–15025

    PubMed  CAS  Google Scholar 

  • Baratti CM, Boccia MM (1999) Effects of sildenafil on long-term retention of an inhibitory avoidance response in mice. Behav Pharmacol 10:731–737

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Grecksch G (2008) Phosphodiesterase inhibitors-are they potential neuroleptic drugs? Behav Brain Res 186:155–160

    PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2004) Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 45:853–857

    PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    PubMed  CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7:137–151

    PubMed  CAS  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. CurrPharmDes 12:2511–2523

    CAS  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, et al (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47:1081–1092

    PubMed  CAS  Google Scholar 

  • Bourtchouladze R, Lidge R, Catapano R, Stanley J, Gossweiler S, Romashko D, Scott R, et al (2003) A mouse model of Rubinstein-Taybi syndrome: defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4. Proc Natl Acad Sci USA 100:10518–10522

    PubMed  CAS  Google Scholar 

  • Byers D, Davis RL, Kiger JA, Jr (1981) Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289:79–81

    PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Sancesario G, Morello M, Giorgi M, Pisani A, et al (1999) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci 19:2489–2499

    PubMed  CAS  Google Scholar 

  • Chen CN, Denome S, Davis RL (1986) Molecular analysis of cDNA clones and the corresponding genomic coding sequences of the Drosophila dunce + gene, the structural gene for cAMP phosphodiesterase. Proc Natl Acad Sci USA 83:9313–9317

    PubMed  CAS  Google Scholar 

  • Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK (2008) The DISC locus in psychiatric illness. Mol Psychiatry 13:36–64

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  • Cote RH (2006) Photoreceptor phosphodiesterase (PDE6): a G-protein-activated PDE regulating visual excitation in rod and cone photoreceptor cells. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 165–193

    Google Scholar 

  • Davis RL, Kiger JA, Jr (1981) Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J Cell Biol 90:101–107

    PubMed  CAS  Google Scholar 

  • Devan BD, Bowker JL, Duffy KB, Bharati IS, Jimenez M, Sierra-Mercado D, Jr, Nelson CM, et al (2006) Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Psychopharmacology (Berl) 183:439–445

    CAS  Google Scholar 

  • Devan BD, Pistell PJ, Daffin LW, Jr, Nelson CM, Duffy KB, Bowker JL, Bharati IS, et al (2007) Sildenafil citrate attenuates a complex maze impairment induced by intracerebroventricular infusion of the NOS inhibitor N omega-nitro-L-arginine methyl ester. Eur J Pharmacol 563:134–140

    PubMed  CAS  Google Scholar 

  • de Vente J, Markerink-van Ittersum M, Vles JS (2006) The role of phosphodiesterase isoforms 2,5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord. J Chem Neuroanat 31:275–303

    PubMed  Google Scholar 

  • Dlaboga D, Hajjhussein H, O'Donnell JM (2006) Regulation of phosphodiesterase-4 (PDE4) expression in mouse brain by repeated antidepressant treatment: comparison with rolipram. Brain Res 1096:104–112

    PubMed  CAS  Google Scholar 

  • Dlaboga D, Hajjhussein H, O'Donnell JM (2008) Chronic haloperidol and clozapine produce different patterns of effects on phosphodiesterase-1B, -4B, and -10A expression in rat striatum. Neuropharmacology 54:745–754

    PubMed  CAS  Google Scholar 

  • D'Sa C, Tolbert LM, Conti M, Duman RS (2002) Regulation of cAMP-specific phosphodiesterases type 4B and 4D (PDE4) splice variants by cAMP signaling in primary cortical neurons. J Neu-rochem 81:745–757

    Google Scholar 

  • D'Sa C, Eisch AJ, Bolger GB, Duman RS (2005) Differential expression and regulation of the cAMP-selective phosphodiesterase type 4A splice variants in rat brain by chronic antidepressant administration. Eur J Neurosci 22:1463–1475

    PubMed  Google Scholar 

  • Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688

    PubMed  CAS  Google Scholar 

  • Duman RS (2004) Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med 5:11–25

    PubMed  CAS  Google Scholar 

  • Egawa T, Mishima K, Matsumoto Y, Iwasaki K, Iwasaki K, Fujiwara M (1997) Rolipram and its optical isomers, phosphodiesterase 4 inhibitors, attenuated the scopolamine-induced impairments of learning and memory in rats. Jpn J Pharmacol 75:275–281

    PubMed  CAS  Google Scholar 

  • Engels P, Abdel'Al S, Hulley P, Lubbert H (1995) Brain distribution of four rat homologues of the Drosophila dunce cAMP phosphodiesterase. J Neurosci Res 41:169–178

    PubMed  CAS  Google Scholar 

  • Eskin A, Takahashi JS, Zatz M, Block GD (1984) Cyclic guanosine 3′:5′-monophosphate mimics the effects of light on acircadian pacemaker in the eye of aplysia. J Neurosci 4:2466–2471

    PubMed  CAS  Google Scholar 

  • Farber DB, Danciger M (1997) Identification of genes causing photoreceptor degenerations leading to blindness. Curr Opin Neurobiol 7:666–673

    PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    PubMed  CAS  Google Scholar 

  • Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41

    PubMed  CAS  Google Scholar 

  • Fletcher RT, Sanyal S, Krishna G, Aguirre G, Chader GJ (1986) Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration. J Neurochem 46:1240–1245

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Fuxe K, Agnati L (1976) Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur J Pharmacol 38:31–38

    PubMed  CAS  Google Scholar 

  • Fujishige K, Kotera J, Omori K (1999) Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur J Biochem 266:1118–1127

    PubMed  CAS  Google Scholar 

  • Furuyama T, Iwahashi Y, Tano Y, Takagi H, Inagaki S (1994) Localization of 63-kDa calmodulin-stimulated phosphodiesterase mRNA in the rat brain by in situ hybridization histochemistry. Brain Res Mol Brain Res 26:331–336

    PubMed  CAS  Google Scholar 

  • Giordano D, De Stefano ME, Citro G, Modica A, Giorgi M (2001) Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain. Biochim Biophys Acta 1539:16–27

    PubMed  CAS  Google Scholar 

  • Giorgi M, Modica A, Pompili A, Pacitti C, Gasbarri A (2004) The induction of cyclic nucleotide phosphodiesterase 4 gene (PDE4D) impairs memory in a water maze task. Behav Brain Res 154:99–106

    PubMed  CAS  Google Scholar 

  • Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114:1624–1634

    PubMed  CAS  Google Scholar 

  • Gretarsdottir S, Sveinbjornsdottir S, Jonsson HH, Jakobsson F, Einarsdottir E, Agnarsson U, Shkolny D, et al (2002) Localization of a susceptibility gene for common forms of stroke to 5q12. Am J Hum Genet 70:593–603

    PubMed  CAS  Google Scholar 

  • Gretarsdottir S, Thorleifsson G, Reynisdottir ST, Manolescu A, Jonsdottir S, Jonsdottir T, Gudmundsdottir T, et al (2003) The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nat Genet 35:131–138

    PubMed  CAS  Google Scholar 

  • Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE (2006) cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem 281:2841–2846

    PubMed  CAS  Google Scholar 

  • Guipponi M, Scott HS, Kudoh J, Kawasaki K, Shibuya K, Shintani A, Asakawa S, et al (1998) Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence. Hum Genet 103:386–392

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68

    PubMed  CAS  Google Scholar 

  • Hebb AL, Robertson HA (2007) Role of phosphodiesterases in neurological and psychiatric disease. Curr Opin Pharmacol 7:86–92

    PubMed  CAS  Google Scholar 

  • Hebb AL, Robertson HA, Denovan-Wright EM (2004) Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington's disease transgenic mice prior to the onset of motor symptoms. Neuroscience 123:967–981

    PubMed  CAS  Google Scholar 

  • Hebb AL, Robertson HA, Denovan-Wright EM (2008) Phosphodiesterase 10A inhibition is associated with locomotor and cognitive deficits and increased anxiety in mice. Eur Neuropsy-chopharmacol 18:339–363

    CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    PubMed  CAS  Google Scholar 

  • Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 370:1–18

    PubMed  CAS  Google Scholar 

  • Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci USA 99:7628–7633

    PubMed  CAS  Google Scholar 

  • Jin SL, Richard FJ, Kuo WP, D'Ercole AJ, Conti M (1999) Impaired growth and fertility of cAMP-specific phosphodiesterase PDE4D-deficient mice. Proc Natl Acad Sci USA 96:11998–12003

    PubMed  CAS  Google Scholar 

  • Jin SL, Latour AM, Conti M (2005) Generation of PDE4 knockout mice by gene targeting. Methods Mol Biol 307:191–210

    PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    PubMed  CAS  Google Scholar 

  • Kauvar LM (1982) Defective cyclic adenosine 3′:5′-monophosphate phosphodiesterase in the Drosophila memory mutant dunce. J Neurosci 2:1347–1358

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Gamanuma M, Sasaki T, Yamashita Y, Yuasa K, Kotera J, Omori K (2003) Molecular comparison of rat cyclic nucleotide phosphodiesterase 8 family: unique expression of PDE8B in rat brain. Gene 319:21–31

    PubMed  CAS  Google Scholar 

  • Koesling D, Mullershausen F, Lange A, Friebe A, Mergia E, Wagner C, Russwurm M (2005) Negative feedback in NO/cGMP signalling. Biochem Soc Trans 33:1119–1122

    PubMed  CAS  Google Scholar 

  • Kotera J, Yanaka N, Fujishige K, Imai Y, Akatsuka H, Ishizuka T, Kawashima K, et al (1997) Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development. Eur J Biochem 249:434–442

    PubMed  CAS  Google Scholar 

  • Kotera J, Fujishige K, Omori K (2000) Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues. J Histochem Cytochem 48:685–693

    PubMed  CAS  Google Scholar 

  • Kuenzi F, Rosahl TW, Morton RA, Fitzjohn SM, Collingridge GL, Seabrook GR (2003) Hip-pocampal synaptic plasticity in mice carrying the rd mutation in the gene encoding cGMP phosphodiesterase type 6 (PDE6). Brain Res 967:144–151

    PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    PubMed  CAS  Google Scholar 

  • Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, et al (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′, 5′-cyclic nucleotide phosphodiesterase. Gene 216:139–147

    PubMed  CAS  Google Scholar 

  • Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K, Florio VA (1999) Isolation and characterization of PDE10A, a novel human 3′,5′-cyclic nucleotide phosphodiesterase. Gene 234:109–117

    PubMed  CAS  Google Scholar 

  • Loughney K, Taylor J, Florio VA (2005) 3′, 5′-cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int J Impot Res 17:320–325

    PubMed  CAS  Google Scholar 

  • Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS, Frey AS, et al (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum Mol Genet 9:1259–1271

    PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    PubMed  CAS  Google Scholar 

  • Mathur A, Golombek DA, Ralph MR (1996) cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am J Physiol 270:R1031–R1036

    PubMed  CAS  Google Scholar 

  • Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107

    PubMed  CAS  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670

    PubMed  CAS  Google Scholar 

  • Menniti FS, Chappie TA, Humphrey JM, Schmidt CJ (2007) Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr Opin Investig Drugs 8:54–59

    PubMed  CAS  Google Scholar 

  • Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, et al (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191

    PubMed  CAS  Google Scholar 

  • Monfort P, Munoz MD, Kosenko E, Llansola M, Sanchez-Perez A, Cauli O, Felipo V (2004) Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia. Neurochem Int 45:895–901

    CAS  Google Scholar 

  • Monti B, Berteotti C, Contestabile A (2006) Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsy-chopharmacology 31:278–286

    CAS  Google Scholar 

  • Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C, Zhang YJ, et al (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22:3673–3682

    PubMed  CAS  Google Scholar 

  • Naro F, Zhang R, Conti M (1996) Developmental regulation of unique adenosine 3′, 5′-monophosphate-specific phosphodiesterase variants during rat spermatogenesis. Endocrinology 137:2464–2472

    PubMed  CAS  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2004) The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J Neurosci 24:7740–7744

    PubMed  CAS  Google Scholar 

  • Navakkode S, Sajikumar S, Frey JU (2005) Mitogen-activated protein kinase-mediated reinforcement of hippocampal early long-term depression by the type IV-specific phosphodiesterase inhibitor rolipram and its effect on synaptic tagging. J Neurosci 25:10664–10670

    PubMed  CAS  Google Scholar 

  • O'Connor V, Genin A, Davis S, Karishma KK, Doyere V, De Zeeuw CI, Sanger G, et al (2004) Differential amplification of intron-containing transcripts reveals long term potentiation-associated up-regulation of specific Pde10A phosphodiesterase splice variants. J Biol Chem 279:15841– 15849

    PubMed  Google Scholar 

  • Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G (2000) Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 20:349–374

    Google Scholar 

  • Perez-Torres S, Cortes R, Tolnay M, Probst A, Palacios JM, Mengod G (2003) Alterations on phosphodiesterase type 7 and 8 isozyme mRNA expression in Alzheimer's disease brains examined by in situ hybridization. Exp Neurol 182:322–334

    Google Scholar 

  • Pittler SJ, Baehr W (1991) Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci USA 88:8322–8326

    PubMed  CAS  Google Scholar 

  • Polesskaya OO, Smith RF, Fryxell KJ (2007) Chronic nicotine doses down-regulate PDE4 isoforms that are targets of antidepressants in adolescent female rats. Biol Psychiatry 61:56–64

    PubMed  CAS  Google Scholar 

  • Polli JW, Kincaid RL (1994) Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J Neurosci 14:1251–1261

    PubMed  CAS  Google Scholar 

  • Porteous DJ, Thomson P, Brandon NJ, Millar JK (2006) The genetics and biology of DISC1—an emerging role in psychosis and cognition. Biol Psychiatry 60:123–131

    PubMed  CAS  Google Scholar 

  • Prickaerts J, de Vente J, Honig W, Steinbusch HW, Blokland A (2002a) cGMP, but not cAMP, in rat hippocampus is involved in early stages of object memory consolidation. Eur J Pharmacol 436:83–87

    CAS  Google Scholar 

  • Prickaerts J, van Staveren WC, Sik A, Markerink-van Ittersum M, Niewohner U, van der Staay FJ, Blokland A, et al (2002b) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:351–361

    CAS  Google Scholar 

  • Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, et al (2004) Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 45:915–928

    PubMed  CAS  Google Scholar 

  • Prosser RA, McArthur AJ, Gillette MU (1989) cGMP induces phase shifts of a mammalian circa-dian pacemaker at night, in antiphase to cAMP effects. Proc Natl Acad Sci U S A 86:6812–6815

    PubMed  CAS  Google Scholar 

  • Qiu Y, Davis RL (1993) Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster. Genes Dev 7:1447–1458

    PubMed  CAS  Google Scholar 

  • Qiu YH, Chen CN, Malone T, Richter L, Beckendorf SK, Davis RL (1991) Characterization of the memory gene dunce of Drosophila melanogaster. J Mol Biol 222:553–565

    PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  • Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV (2002) Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphoryla-tion in response to dopamine agonists and display impaired spatial learning. J Neurosci 22:5188–5197

    PubMed  CAS  Google Scholar 

  • Reyes-Irisarri E, Perez-Torres S, Mengod G (2005) Neuronal expression of cAMP-specific phos-phodiesterase 7B mRNA in the rat brain. Neuroscience 132:1173–1185

    PubMed  CAS  Google Scholar 

  • Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, de Vente J (2007a) Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer's disease human brains. Eur J Neurosci 25:3332–3338

    Google Scholar 

  • Reyes-Irisarri E, Sanchez AJ, Garcia-Merino JA, Mengod G (2007b) Selective induction of cAMP phosphodiesterase PDE4B2 expression in experimental autoimmune encephalomyelitis. J Neu-ropathol Exp Neurol 66:923–931

    Article  Google Scholar 

  • Reyes-Irisarri E, Perez-Torres S, Miro X, Martinez E, Puigdomenech P, Palacios JM, Mengod G (2008) Differential distribution of PDE4B splice variant mRNAs in rat brain and the effects of systemic administration of LPS in their expression. Synapse 62:74–79

    Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21:1070–1076

    PubMed  Google Scholar 

  • Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334

    PubMed  CAS  Google Scholar 

  • Rutten K, Vente JD, Sik A, Ittersum MM, Prickaerts J, Blokland A (2005) The selective PDE5 inhibitor, sildenafil, improves object memory in Swiss mice and increases cGMP levels in hip-pocampal slices. Behav Brain Res 164:11–16

    PubMed  CAS  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    PubMed  CAS  Google Scholar 

  • Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 196:643–648

    CAS  Google Scholar 

  • Rybalkin SD, Bornfeldt KE, Sonnenburg WK, Rybalkina IG, Kwak KS, Hanson K, Krebs EG, et al (1997) Calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1C) is induced in human arterial smooth muscle cells of the synthetic, proliferative phenotype. J Clin Invest 100:2611–2621

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310–3317

    PubMed  CAS  Google Scholar 

  • Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M (2008) Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem 105:546–56

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, et al (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther 325:681–690

    PubMed  CAS  Google Scholar 

  • Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, Lanfear J, et al (2003) Immuno-histochemical localization of PDE10A in the rat brain. Brain Res 985:113–126

    PubMed  CAS  Google Scholar 

  • Shimizu-Albergine M, Rybalkin SD, Rybalkina IG, Feil R, Wolfsgruber W, Hofmann F, Beavo JA (2003) Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci 23:6452–6459

    Google Scholar 

  • Silvestre JS, Fernandez AG, Palacios JM (1999) Effects of rolipram on the elevated plus-maze test in rats: a preliminary study. J Psychopharmacol 13:274–277

    PubMed  CAS  Google Scholar 

  • Siuciak JA, Chapin DS, Harms JF, Lebel LA, McCarthy SA, Chambers L, Shrikhande A, et al (2006a) Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 51:386–396

    CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, Stock JL, et al (2006b) Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: evidence for altered striatal function. Neuropharmacology 51:374–385

    CAS  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Martin AN (2008) Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 197:115–126

    CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1999) Isolation and characterization of a dual-substrate phos-phodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A 96:7071–7076

    PubMed  CAS  Google Scholar 

  • Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L, Alexander JR, et al (1994) A possible vulnerability locus for bipolar affective disorder on chromosome 21q223. Nat Genet 8:291–296

    PubMed  CAS  Google Scholar 

  • Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS (1999) Chronic antidepres-sant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. J Neurosci 19:610–618

    PubMed  CAS  Google Scholar 

  • Takahashi SI, Nedachi T, Fukushima T, Umesaki K, Ito Y, Hakuno F, Van Wyk JJ, et al (2001) Long-term hormonal regulation of the cAMP-specific phosphodiesterases in cultured FRTL-5 thyroid cells. Biochim Biophys Acta 1540:68–81

    PubMed  CAS  Google Scholar 

  • Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, et al (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 10:657–668, 616

    PubMed  CAS  Google Scholar 

  • Tischkau SA, Weber ET, Abbott SM, Mitchell JW, Gillette MU (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J Neurosci 23:7543–7550

    PubMed  CAS  Google Scholar 

  • Tully T (1991) Physiology of mutations affecting learning and memory in Drosophila—the missing link between gene product and behavior. Trends Neurosci 14:163–164

    PubMed  CAS  Google Scholar 

  • van Staveren WC, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HW, de Vente J (2002) Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 31:729–741

    PubMed  Google Scholar 

  • Van Staveren WC, Steinbusch HW, Markerink-Van Ittersum M, Repaske DR, Goy MF, Kotera J, Omori K, et al (2003) mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 467:566–580

    PubMed  Google Scholar 

  • van Staveren WC, Steinbusch HW, Markerink-van Ittersum M, Behrends S, de Vente J (2004) Species differences in the localization of cGMP-producing and NO-responsive elements in the mouse and rat hippocampus using cGMP immunocytochemistry. Eur J Neurosci 19:2155–2168

    PubMed  Google Scholar 

  • Weber ET, Gannon RL, Rea MA (1995) cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci Lett 197:227–230

    PubMed  CAS  Google Scholar 

  • Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM, McCann SM, et al (2006) Phosphodiesterase genes are associated with susceptibility to major depression and antidepres-sant treatment response. Proc Natl Acad Sci U S A 103:15124–15129

    PubMed  CAS  Google Scholar 

  • Xie Z, Adamowicz WO, Eldred WD, Jakowski AB, Kleiman RJ, Morton DG, Stephenson DT, et al (2006) Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodi-esterase. Neuroscience 139:597–607

    PubMed  CAS  Google Scholar 

  • Yamashita N, Hayashi A, Baba J, Sawa A (1997) Rolipram, a phosphodiesterase-4-selective inhibitor, promotes the survival of cultured rat dopaminergic neurons. Jpn J Pharmacol 75:155–159

    PubMed  CAS  Google Scholar 

  • Yan C, Bentley JK, Sonnenburg WK, Beavo JA (1994) Differential expression of the 61 kDa and 63 kDa calmodulin-dependent phosphodiesterases in the mouse brain. J Neurosci 14:973–984

    PubMed  CAS  Google Scholar 

  • Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K, Beavo JA (1995) Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci U S A 92:9677–9681

    PubMed  CAS  Google Scholar 

  • Zeller E, Stief HJ, Pflug B, Sastre-y-Hernandez M (1984) Results of a phase II study of the antide-pressant effect of rolipram. Pharmacopsychiatry 17:188–190

    PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, Jin SL, Frith SA, Suvarna N, Conti M, O'Donnell JM (2002) Antidepressant-like profile and reduced sensitivity to rolipram in mice deficient in the PDE4D phosphodi-esterase enzyme. Neuropsychopharmacology 27:587–595

    PubMed  CAS  Google Scholar 

  • Zhang HT, Huang Y, Masood A, Stolinski LR, Li Y, Zhang L, Dlaboga D, et al (2008) Anxiogenic-like behavioral phenotype of mice deficient in phosphodiesterase 4B (PDE4B). Neuropsy-chopharmacology 33:1611–1623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kleppisch, T. (2009). Phosphodiesterases in the Central Nervous System. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_5

Download citation

Publish with us

Policies and ethics