Skip to main content

The Chloroplast Envelope Proteome and Lipidome

  • Chapter
The Chloroplast

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 13))

Abstract

The lipid and protein components of the two envelope membranes, which delimit the chloroplast from the surrounding cytosol, have been extensively analyzed. Envelope membranes contain a wide diversity of glycolipids, pigments, and prenylquinones and play a key role in their synthesis, and also in the formation of various lipid-derived signaling molecules (chlorophyll precursors, abscisic acid, and jasmonate precursors, for instance). Many of the enzymes involved were identified by proteomics. Here, we present a curated protein list established from chloroplast envelope proteomes analyzed by different groups. The envelope proteome contains key proteins involved in the regulation of metabolic pathways, in cell signaling (and especially in plastid-to-nucleus signaling), in stress responses, etc. A series of transport systems for proteins, metabolites, and ions have also been identified by proteomics. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. The lipid and protein equipment of this plastid-specific membrane system reflect both its prokaryotic and eukaryotic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adam Z (2005) The chloroplast proteolytic machinery. In: Møller SG (ed) Plastids. Blackwell, Oxford, pp 214–236

    Google Scholar 

  • Adam Z, Rudella A, van Wijk K (2006) Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts. Curr Opin Plant Biol 9:234–240

    Article  PubMed  CAS  Google Scholar 

  • Aldridge C, Maple J, Møller SG (2005) The molecular biology of plastid division in higher plants. J Exp Bot 56:1061–1077

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Dörmann P (2008) Chloroplast membrane lipid biosynthesis and transport. Plant Cell Monogr., doi:10.1007/7089_2008_18

    Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    Article  PubMed  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane . J Biol Chem 280:27578–27586

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Jarvis P (2008) The chloroplast protein import apparatus, its components, and their roles. Plant Cell Monogr., doi:10.1007/7089_2008_40

    Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, dif ferentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 10960–10965

    Article  PubMed  CAS  Google Scholar 

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking . Proc Natl Acad Sci USA 103:10817–10822

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Muller F, Eubel H, Braun HP, Frentzen M, Kushnir S (2003) Arabidopsis phosphati-dylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909

    Article  PubMed  CAS  Google Scholar 

  • Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rebeille F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831

    Article  PubMed  CAS  Google Scholar 

  • Benning C, Xu C, Awai K, (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9:241–247

    Article  PubMed  CAS  Google Scholar 

  • Benson AA, (1964) Plant membrane lipids. Annu Rev Plant Physiol 15:1–16

    Article  CAS  Google Scholar 

  • Billecocq A, (1975) Structure des membranes biologiques: localisation du sulfoquinovosyldigly-céride dans les diverses membranes des chloroplastes au moyen des anticorps spécifiques . Ann Imunol (Institut Pasteur) 126C:337–352

    CAS  Google Scholar 

  • Billecocq A, Douce R, Faure M, (1972) Structure des membranes biologiques: localisation des galactosyldiglycérides dans les chloroplastes au moyen des anticorps spécifiques . CR Acad Sci Paris 275:1135–1137

    CAS  Google Scholar 

  • Bishop DG, Sparace SA, Mudd JB, (1985) Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants: the origin of the diacylglycerol moiety. Arch Biochem Biophys 240:851–858

    Article  PubMed  CAS  Google Scholar 

  • Blée E, Joyard J (1996) Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol 110:445–454

    PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. I-Electrophoresis and immunochemical analysesJ Biol Chem 258:13273–13280

    PubMed  CAS  Google Scholar 

  • Block MA, Douce R, Joyard J, Rolland N (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244

    Article  PubMed  CAS  Google Scholar 

  • Bölter B, Soll J (2001) Ion channels in the outer membranes of chloroplasts and mitochondria: open doors or regulated gates? EMBO J 20:935–940

    Article  PubMed  Google Scholar 

  • Bouvier F, Linka N, Isner JC, Mutterer J, Weber AP, Camara B (2006) Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development . Plant Cell 18:3088–3105

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ , Li HM (1998) A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant J 16, 33–39

    Article  PubMed  Google Scholar 

  • Costes C, Burghoffer C, Joyard J, Block MA, Douce R (1979) Occurrence and biosynthesis of violaxanthin in isolated spinach chloroplast envelope. FEBS Lett 103:17–21

    Article  CAS  Google Scholar 

  • Dietz KJ (2007) The dual function of plant peroxiredoxins in antioxidant defence and redox signaling. Subcell Biochem 44:267–294

    Article  PubMed  Google Scholar 

  • Dietzel L, Steiner S, Schröter Y, Pfannschmidt T (2008) Retrograde signalling. Plant Cell Monogr., doi:10.1007/7089_2008_41

    Google Scholar 

  • Dörmann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269–276

    Article  PubMed  CAS  Google Scholar 

  • Dörmann P, Hoffmann-Benning S, Balbo I, Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol . Plant Cell 7:1801–1810

    Article  PubMed  Google Scholar 

  • Dorne AJ, Block MA, Joyard J, Douce R (1982) The galactolipid:galactolipid galactosyltransferase is located on the outer surface of the outer chloroplast envelope. FEBS Lett 145:30–34

    Article  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Block MA, Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100:1690–1697

    Article  PubMed  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87:71–74

    Article  PubMed  CAS  Google Scholar 

  • Douce R (1974) Site of galactolipid synthesis in spinach chloroplasts. Science 183:852–853

    Article  PubMed  CAS  Google Scholar 

  • Douce R, Joyard J (1979) Structure and function of the plastid envelope. Adv Bot Res 7:1–116

    Article  CAS  Google Scholar 

  • Douce R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8:978–984

    PubMed  CAS  Google Scholar 

  • Ephritikhine G, Ferro M, Rolland N (2004) Plant membrane proteomics. Plant Physiol Biochem 42:943–962

    Article  PubMed  CAS  Google Scholar 

  • Falciatore A, Merendino L, Barneche F, Ceol M, Meskauskiene R, Apel K, Rochaix JD (2005) The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas. Genes Dev 19:176–187

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Rivière-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99:11487–11492

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7:270–276

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon TA, Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur J Biochem 129:629–636

    Article  PubMed  CAS  Google Scholar 

  • Friso G, Ytterberg AJ, Giacomelli L, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts; new proteins, functions and a plastid proteome database. Plant Cell 16:478–499

    Article  PubMed  CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zahringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS (2003) Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis . J Proteome Res 2:413–425

    Article  PubMed  CAS  Google Scholar 

  • Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular localization and purification of a p -hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325:761–769

    PubMed  CAS  Google Scholar 

  • Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R (2006) OEP37 is a new member of the chloroplast outer membrane ion channels. J Biol Chem 281:17989–17998

    Article  PubMed  CAS  Google Scholar 

  • Haferkamp I (2007) The diverse members of the mitochondrial carrier family in plants. FEBS Lett 581:2375–2379

    Article  PubMed  CAS  Google Scholar 

  • Härtel H, Lokstein H, Dörmann P, Grimm B, Benning C (1997) Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115:1175–1184

    Article  PubMed  Google Scholar 

  • Härtel H, Essigmann B, Lokstein H, Hoffmann-Benning S, Peters-Kottig M, Benning C (1998) The phospholipid-deficient pho1 mutant of Arabidopsis thaliana is affected in the organiza tion, but not in the light acclimation, of the thylakoid membrane . Biochim Biophys Acta 1415:205–218

    Article  PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    Article  PubMed  Google Scholar 

  • Hartmann-Bouillon MA, Benveniste P (1987) Plant membrane sterols: isolation, identification, and biosynthesis. Methods Enzymol 148:632–650

    Article  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    Article  PubMed  CAS  Google Scholar 

  • Havaux H, Eymery F, Porfirova S, Rey P, Dörmann P (2005) The protective functions of vitamin E against photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  PubMed  CAS  Google Scholar 

  • Heinz E (1977) Enzymatic reactions in galactolipid biosynthesis. In: Tevini A, Lichtenthaler H K (eds) Lipids and lipid polymers in higher plants. Springer, Berlin, pp 102–120

    Google Scholar 

  • Heinz E (1996) Plant Glycolipids. In: Christie WW (ed) Advances in lipid methodology — three, chap 6. The Oily, Dundee, pp 211–332

    Google Scholar 

  • Heinz E, Harwood JL (1977) Incorporation of carbon dioxide, acetate and sulphate into the glycerolipids of Vicia faba leaves. Hoppe Seylers Z Physiol Chem 358:897–908

    PubMed  CAS  Google Scholar 

  • Heinz E, Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    PubMed  CAS  Google Scholar 

  • Helliwell CA, Sullivan JA, Mould RM, Gray JC, Peacock WJ, Dennis ES (2001) A plastid envelope location of Arabidopsis ent -kaurene oxidase links the plastid and endoplasmic reticulum steps of the gibberellin biosynthesis pathway. Plant J 28:201–208

    Article  PubMed  CAS  Google Scholar 

  • Hemmler R, Becker T, Schleiff E, Bölter B, Stahl T, Soll J, Götze TA, Braams S, Wagner R (2006) Molecular properties of Oep21, an ATP-regulated anion-selective solute channel from the outer chloroplast membrane. J Biol Chem 281:12020–12029

    Article  PubMed  CAS  Google Scholar 

  • Hiltbrunner A, Bauer J, Alvarez-Huerta M, Kessler F (2001) Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem Cell Biol 79:629–635

    Article  PubMed  CAS  Google Scholar 

  • Hofmann NR, Theg SM (2005) Chloroplast outer membrane protein targeting and insertion. Trends Plant Sci. 10:450–457

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Taylor JP, Chen JG, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots . Nature 433:527–531

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Soll J (2002) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1590:177–189

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant . Proc Natl Acad Sci USA 97:8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey SW , Douce R , Benson AA (1974) Carotenoid transformations in the chloroplast envelope. Proc Natl Acad Sci USA 71:807–810

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria . J Cell Biol 167:863–874

    Article  PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in lant cells. Prog Lipid Res 46:37–55

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Saito Y, Jin L, Ogawa T, Kim K-M, Yu L-H, Tone Y, Hirata A, Umeda M, Uchimiya H (2005) A novel Arabidopsis gene causes Bax-like lethality in Saccharomyces cerevisiae. J Biol Chem 280:39468–39473

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions . J Biol Chem 277 : 1166– 1173

    Article  PubMed  CAS  Google Scholar 

  • Kelly AA, Froehlich JE, Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Kessler F, Schnell DJ (2006) The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 7:248–257

    Article  PubMed  CAS  Google Scholar 

  • Klaus D, Hartel H, Fitzpatrick LM, Froehlich JE, Hubert J, Benning C, Dörmann P (2002) Digalactosyldiacylglycerol synthesis in chloroplasts of the Arabidopsis dgd1 mutant. Plant Physiol 128:885–895

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    Article  PubMed  CAS  Google Scholar 

  • Koo AJ, Ohlrogge JB (2002) The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. Plant Physiol 130:823–836

    Article  PubMed  Google Scholar 

  • Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, Rycke RD, Engler G, Stephan UW, Lange H, Kispal G, Lill R, Montagu MV (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100

    Article  PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schöttler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz KJ (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981

    Article  PubMed  CAS  Google Scholar 

  • Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana : a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    Article  PubMed  CAS  Google Scholar 

  • Li L, Tutone AF, Drummond RS, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK, Prenzel H, Douce R, Joyard J (1981) Localization of prenylquinones in the envelopes of spinach chloroplasts. Biochim Biophys Acta 641:99–105

    Article  PubMed  CAS  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem Dec 282:35945–35953

    Article  CAS  Google Scholar 

  • Maple J, Møller SG (2006) Plastid division: evolution, mechanism and complexity. Ann Bot (Lond) 99:565–579

    Article  CAS  Google Scholar 

  • Maple J, Fujiwara MT, Kitahata N, Lawson T, Baker NR, Yoshida S, Møller SG (2004) GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis. Curr Biol 14:776–781

    Article  PubMed  CAS  Google Scholar 

  • Maple J, Aldridge C, Møller SG (2005) Plastid division is mediated by combinatorial assembly of plastid division proteins. Plant J 43:811–823

    Article  PubMed  CAS  Google Scholar 

  • Maple J, Mateo A, Møller SG (2008) Plastid division regulation and interactions with the environ ment. Plant Cell Monogr., doi:10.1007/7089_2008_20

    Google Scholar 

  • Marmagne A, Salvi D, Rolland N, Ephritikhine G, Joyard J, Barbier-Brygoo H (2006) Proteomics of Arabidopsis membrane proteins. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols, 2nd edn. Methods in molecular biology, vol. 323. Humana, Totowa, pp 403–420

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana . Proc Natl Acad Sci 98:12826–12831

    Article  PubMed  CAS  Google Scholar 

  • Miège C, Maréchal E, Shimojima M, Awai K, Block MA, Ohta H, Takamiya K, Douce R, Joyard J (1999) Biochemical and topological properties of type A MGDG synthase, a spinach chloro-plast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG . Eur J Biochem 265:990–1001

    Article  PubMed  Google Scholar 

  • Millar AH, Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol 131:443–453

    Article  PubMed  CAS  Google Scholar 

  • Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277:47770–47778

    Article  PubMed  CAS  Google Scholar 

  • Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492

    Article  PubMed  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (2002) The complex fate of alpha-ketoacids. Annu Rev Plant Biol 53:357–375

    Article  PubMed  CAS  Google Scholar 

  • Moscat J, Diaz-Meco MT, Albert A,Campuzanol S (2006) Cell signaling and function organized by PB1 domain interactions. Mol Cell 23:631–640

    Article  PubMed  CAS  Google Scholar 

  • Motohasi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using Ds-tagged Arabidopsis pale-green mutant. Plant J 34:719–731

    Article  Google Scholar 

  • Muller F, Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana FEBS Lett 509:298–302

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Nada A, Soll J (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117:3975–3982

    Article  PubMed  CAS  Google Scholar 

  • Nielsen E, Akita M, Davila-Aponte J, Keegstra K (1997) Stable association of chloroplastic pre cursors with protein translocation complexes that contain proteins from both envelope mem branes and a stromal hsp 100 molecular chaperone. EMBO J 16:935–946

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2001) Amino acid transporters in plants. Biochim Biophys Acta 1465:275–280

    Google Scholar 

  • Palmieri L, Arrigoni R, Blanco E, Carrari F, Zanor MI, Studart-Guimaraes C, Fernie AR, Palmieri F (2006) Molecular identification of an Arabidopsis S-adenosylmethionine transporter. Analysis of organ distribution, bacterial expression, reconstitution into liposomes, and functional characterization. Plant Physiol 142:855–865

    Article  PubMed  CAS  Google Scholar 

  • Pineau B, Dubertret G, Joyard J, Douce R (1986) Fluorescence properties of the envelope membranes from spinach. J Biol Chem 261:9210–9215

    PubMed  CAS  Google Scholar 

  • Pineau B, Gérard-Hirne C, Douce R, Joyard J (1993) Identification of the main species of tetrapyrrolic pigments in envelope membranes from spinach chloroplasts. Plant Physiol 102:821–828

    PubMed  CAS  Google Scholar 

  • Pohlmeyer K, Soll J, Grimm R, Hill K, Wagner R (1998) A high-conductance solute channel in the chloroplastic outer envelope from Pea. Plant Cell 10:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Pontier D, Albrieux C, Joyard J, Lagrange T, Block MA (2007) Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis . Effects on chloroplast development and on chloroplast-to-nucleus signaling. J Biol Chem 282:2297–2304

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R, Rébeillé F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:15360–15365

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rébeillé F, Douce R (2004) Methionine metabolism in plants: chloroplasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279:22548–22557

    Article  PubMed  CAS  Google Scholar 

  • Rawyler A, Meylan-Bettex M, Siegenthaler PA (1995) (Galacto) lipid export from envelope to thylakoid membranes in intact chloroplasts. II. A general process with a key role for the enve lope in the establishment of lipid asymmetry in thylakoid membranes . Biochim Biophys Acta 1233:123–133

    Article  PubMed  Google Scholar 

  • Reinbothe S, Reinbothe C, Holtorf H, Apel K (1995) Two NADPH:Protochlorophyllide oxidore-ductases in barley: evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings. Plant Cell 7:1933–1940

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Mache R, Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci USA 97:9795–9800

    Article  PubMed  CAS  Google Scholar 

  • Renne P, Dressen U, Hebbeker U, Hille D, Flügge UI, Westhoff P, Weber AP (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2 . Plant J 35:316–331

    Article  PubMed  CAS  Google Scholar 

  • Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Douce R, Joyard J (2003) Proteomics of chloroplast envelope membranes. Photosynth Res 78:205–230

    Article  PubMed  CAS  Google Scholar 

  • Rose AK, Schraegle SJ, Stahlberg EA, Meier I (2005) Coiled-coil protein composition of 22 proteomes — differences and common themes in subcellular infrastructure and traffic control . BMC Evol Biol 5:66

    Article  PubMed  CAS  Google Scholar 

  • Rullkötter J, Heinz E, Tulloch AP (1975) Combination and positional distribution of fatty acids in plant digalactosyl diglycerides. Z Pflanzenphysiol 76:163–175

    Google Scholar 

  • Sadre R, Gruber J, Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580:5357–5362

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biology 57:599–621

    Article  CAS  Google Scholar 

  • Salvi D, Rolland N, Joyard J, Ferro M (2008a) Purification and proteomic analysis of chloroplasts and their sub-organellar compartments. In: P ieger D, Rossier J (eds) Organelle proteomics. Methods in molecular biology, vol 432. Humana, Totowa

    Google Scholar 

  • Salvi D, Rolland N, Joyard J, Ferro M (2008b) Assessment of organelle purity using antibodies and specific assays: the example of the chloroplast envelope. In: P ieger D, Rossier J (eds) Organelle proteomics. Methods in molecular Biology, vol 432. Humana, Totowa

    Google Scholar 

  • Schleiff E, Soll J (2005) Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep 6:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast. olecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis Plant Physiol 129:1700–1709

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral mem brane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Garin J, Joyard J (1999) Differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19:217–228

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Rolland N, Dorne AJ, Joyard J (2000) Sulfolipid is a potential candidate for annexin binding to the outer surface of chloroplast . Biochem Biophys Res Commun 272:519–524

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–2892

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Salvi D, Joyard J, Rolland N (2008) Purification of chloroplasts from two model plants: Arabidopsis and spinach. Curr Protocols Cell Biol 33 (in press) Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y,

    Google Scholar 

  • Shinozaki K (2001) Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13, 61–72

    PubMed  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  PubMed  CAS  Google Scholar 

  • Shingles R, Wimmers LE, McCarty RE (2004) Copper transport across pea thylakoid membranes Plant Physiol 135:145–151

    Article  PubMed  CAS  Google Scholar 

  • Siebertz HP, Heinz E, Linscheid M, Joyard J, Douce R (1979) Characterization of lipids from chloroplast envelopes. Eur J Biochem 101:429–438

    Article  PubMed  CAS  Google Scholar 

  • Siefermann-Harms D, Joyard J, Douce R (1978) Light-induced changes of the carotenoid levels in chloroplast envelopes. Plant Physiol 61:530–533

    Article  PubMed  CAS  Google Scholar 

  • Slack CR, Roughan PG, Balasingham N (1977) Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J 162:289–296

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylqui-nones in isolated outer and inner envelope membranes from spinach chloroplasts . Arch Biochem Biophys 238:290–299

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR, Chory J (2003) Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421:79–83

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu N, Wada M (2008) Chloroplast photorelocation movement. Plant Cell Monogr., doi:10.1007/7089_2008_34

    Google Scholar 

  • Sun Q, Emanuelsson O, van Wijk KJ (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis . Subcellular compartmentalization leads to distinctive proteome properties . Plant Physiol 135:723–734

    Article  PubMed  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Teyssier E, Block MA, Douce R, Joyard J (1996) Is E37, a major polypeptide of the inner membrane from plastid envelope, an S-adenosyl methionine-dependent methyltransferase? Plant J 10:903–912

    Article  PubMed  CAS  Google Scholar 

  • Tian L, DellaPenna D, Dixon RA (2007) The pds2 mutation is a lesion in the Arabidopsis homoge-ntisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta 226:1067–1073

    Article  PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408:796–815

    Article  Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits. Arch Biochem Biophys 400:245–257

    Article  PubMed  CAS  Google Scholar 

  • Tovar-Méndez A, Miernyk JA, Randall DD (2003) Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem. 270:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Proteomics identify Arabidopsis plastoglobules as a major site in tocopherol synthesis and accumulation. J Biol Chem 281:11225–11234

    Article  PubMed  CAS  Google Scholar 

  • Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast . Nat Cell Biol. 7:1224–1231

    Article  PubMed  CAS  Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–1933

    Article  PubMed  CAS  Google Scholar 

  • Weber AP, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164

    Article  PubMed  CAS  Google Scholar 

  • Weber APM, Fischer K (2008) The role of metabolite transporters in integrating chloroplasts with the metabolic network of plant cells. Plant Cell Monogr., doi:10.1007/7089_2008_19

    Google Scholar 

  • Xu CC, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY (2006) Functional roles of the major chloroplast lipids in the violaxanthin cycle. Planta 224:719–724

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Bugos RC, Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) Advances in photosynthesis. The photochemistry of carotenoids, vol 8. Kluwer, Dordrecht, pp 293–303

    Chapter  Google Scholar 

  • Ytterberg AJ, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes . Plant Physiol 140:984–997

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rolland, N., Ferro, M., Seigneurin-Berny, D., Garin, J., Block, M., Joyard, J. (2009). The Chloroplast Envelope Proteome and Lipidome. In: Sandelius, A.S., Aronsson, H. (eds) The Chloroplast. Plant Cell Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68696-5_2

Download citation

Publish with us

Policies and ethics