Skip to main content

Petri Nets, Discrete Physics, and Distributed Quantum Computation

  • Chapter
Concurrency, Graphs and Models

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5065))

Abstract

We shall describe connections between Petri nets, quantum physics and category theory. The view of Net theory as a kind of discrete physics has been consistently emphasized by Carl-Adam Petri. The connections between Petri nets and monoidal categories were illuminated in pioneering work by Ugo Montanari and José Meseguer. Recent work by the author and Bob Coecke has shown how monoidal categories with certain additional structure (dagger compactness) can be used as the setting for an effective axiomatization of quantum mechanics, with striking applications to quantum information. This additional structure matches the extension of the Montanari-Meseguer approach by Marti-Oliet and Meseguer, motivated by linear logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: Abstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 1–31. Springer, Heidelberg (2005)

    Google Scholar 

  2. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know! In: Proceedings of the Workshop Essays on Algebraic Process Calculi (APC 25). Electronic Notes in Theoretical Computer Science, vol. 162, pp. 37–41 (2006)

    Google Scholar 

  3. Abramsky, S.: Temperley-Lieb algebra: from knot theory to logic and computation via quantum mechanics. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics of Quantum Computation and Quantum Technology, pp. 515–558. Taylor and Francis, Abington (2007)

    Google Scholar 

  4. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 415–425 (2004), arXiv:quant-ph/0402130

    Google Scholar 

  5. Abramsky, S., Coecke, B.: Abstract physical traces. Theory and Applications of Categories 14, 111–124 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Bell, J.S.: On the Problem of Hidden Variables in Quantum Mechanics. Reviews of Modern Physics (1966)

    Google Scholar 

  7. Bennet, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  8. Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory. Theoretical Computer Science (1987)

    Google Scholar 

  9. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.D.: Spacetime as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  MathSciNet  Google Scholar 

  10. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Carnap, R.: Introduction to Symbolic Logic with Applications. Dover Books (1958)

    Google Scholar 

  12. Dirac, P.A.M.: The Principles of Quantum Mechanics, 3rd edn. Oxford University Press, Oxford (1947)

    MATH  Google Scholar 

  13. Gehlot, V., Gunter, C.: Normal process representatives. In: Proceedings LiCS (1990)

    Google Scholar 

  14. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Joyal, A., Street, R.: The geometry of tensor calculus I. Advances in Mathematics 88, 55–112 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and Applied Algebra 19, 193–213 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Landauer, R.: Information is physical. Physics Today 44, 23–29 (1991)

    Article  Google Scholar 

  18. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  19. Martin, K., Panangaden, P.: A Domain of spacetime intervals for General Relativity. Communications of Mathematical Physics (November 2006)

    Google Scholar 

  20. Marti-Oliet, N., Meseguer, J.: From Petri Nets To Linear Logic Through Categories. IJFCS 2(4), 297–399 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Meseguer, J., Montanari, U.: Petri Nets Are Monoids. Information and Computation 88, 105–155 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Milner, R.: Calculi for Interaction. Acta Informatica 33 (1996)

    Google Scholar 

  23. Milner, R.: Pure bigraphs: Structure and dynamics. Inf. Comput. 204(1), 60–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Petri, C.A.: Fundamentals of a Theory of Asynchronous Information Flow. IFIP Congress, 386–390 (1962)

    Google Scholar 

  25. Petri, C.-A.: State-Transition Structures in Physics and in Computation. International Journal of Theoretical Physics 21(12), 979–993 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. Petri, C.A.: Nets, Time and Space. Theor. Comput. Sci. 153(1–2), 3–48 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Smolin, L.: Three Roads to Quantum Gravity. Phoenix (2000)

    Google Scholar 

  28. Sorkin, R.D.: A Specimen of Theory Construction from Quantum Gravity. In: Leplin, J. (ed.) The Creation of Ideas in Physics: Studies for a Methodology of Theory Construction (Proceedings of the Thirteenth Annual Symposium in Philosophy, held Greensboro, North Carolina, March, 1989, pp. 167–179. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  29. Winskel, G.: Petri nets, algebras, morphisms and compositionality. Information and Computation 72, 197–238 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierpaolo Degano Rocco De Nicola José Meseguer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abramsky, S. (2008). Petri Nets, Discrete Physics, and Distributed Quantum Computation. In: Degano, P., De Nicola, R., Meseguer, J. (eds) Concurrency, Graphs and Models. Lecture Notes in Computer Science, vol 5065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68679-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68679-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68676-7

  • Online ISBN: 978-3-540-68679-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics