Skip to main content

Biomechanics of the Spine

  • Chapter
Spinal Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The purpose of the current chapter is to review the normal mechanics of the spine, i.e., the structure and function of the various components such as discs, vertebral bodies, and spinous ligaments, and to delineate how the normal behavior of these structures is altered by age and various clinical interventions. A growing segment of spine radiology involves not just imaging but musculoskeletal intervention as well. Radiologists now are performing tasks that previously were in the realm of neurosurgery and orthopaedics. Because procedures such as thermal ablation of the disc, vertebroplasty, and kyphoplasty not only address pain relief but also may alter the mechanical behavior of the disc and/or vertebral body, it is important to have a fundamental understanding of the biomechanics of the spine. Knowledge of the normal biomechanics can help the clinician understand the effect a given intervention may have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury. 1981 Volvo Award in Basic Science. Spine 7:184–191

    Article  PubMed  CAS  Google Scholar 

  • Bell GH, Dunbar O, Beck JS et al. (1967) Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75–86

    Article  PubMed  CAS  Google Scholar 

  • Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610

    Article  PubMed  CAS  Google Scholar 

  • Burklein D, Lochmuller EM, Kuhn V et al. (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs ex situ dual energy X-ray absorptiometry. J Biomech 35:579–587

    Article  Google Scholar 

  • Denis F (1983) The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 8:817–831

    Article  PubMed  CAS  Google Scholar 

  • Farfan HF, Cossette JW, Robertson GH et al. (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg 52A:468–497

    Google Scholar 

  • Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246

    Article  PubMed  CAS  Google Scholar 

  • Gregersen GG, Lucas DB (1967) An in vivo study of the axial rotation of the human thoracolumbar spine. J Bone Joint Surg 49A:247–262

    Google Scholar 

  • Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6:139–146

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA, WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    Article  PubMed  CAS  Google Scholar 

  • Kazarian LE (1975) Creep characteristics of the human spinal column. Orthop Clin North Am 6:3–18

    PubMed  CAS  Google Scholar 

  • Keller TS, Hansson TH, Abram AC et al. (1989) Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 14:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Lang SM, Moyle DD, Berg EW et al. (1988) Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography. J Bone Joint Surg 70A:1531–1538

    Google Scholar 

  • Lorenz M, Patwardhan A, Vanderby R Jr (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122–130

    Article  PubMed  CAS  Google Scholar 

  • Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14:107–114

    Article  PubMed  CAS  Google Scholar 

  • Markolf KL, Morris JM (1974) The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg 56A:675–687

    Google Scholar 

  • Moro M, Hecker AT, Bouxsein ML et al. (1995) Failure load of thoracic vertebrae correlates with lumbar bone mineral density measured by DXA. Calcif Tissue Int 56:206–209

    Article  PubMed  CAS  Google Scholar 

  • Panagiotacopulos ND, Pope MH, Bloch R et al. (1987) Water content in human intervertebral discs. Part II. Viscoelastic behavior. Spine 12:918–924

    Article  PubMed  CAS  Google Scholar 

  • Panjabi MM, Krag MH, Dimnet JC et al. (1984) Thoracic spine centers of rotation in the sagittal plane. J Orthop Res 1:387–394

    Article  PubMed  CAS  Google Scholar 

  • Pintar FA, Yoganandan N, Myers T et al. (1992) Biomechanical properties of human lumbar spine ligaments. J Biomech 25:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Riggs BL, Melton LJ III (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511S

    Article  PubMed  CAS  Google Scholar 

  • Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175

    Article  PubMed  CAS  Google Scholar 

  • Rolander SD, Blair WE (1975) Deformation and fracture of the lumbar vertebral end plate. Orthop Clin North Am 6:75–81

    PubMed  CAS  Google Scholar 

  • Virgin WJ (1951) Experimental investigations into the physical properties of the intervertebral disc. J Bone Joint Surg 33B:607–611

    Google Scholar 

  • White AA III, Panjabi MM (1990) Kinematics of the spine. In: Clinical biomechanics of the spine, 2nd edn. Lippincott, Philadelphia, pp 85–125

    Google Scholar 

  • WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  • Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis for low-back pain. Spine 9:557–565

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belkoff, S.M. (2007). Biomechanics of the Spine. In: Van Goethem, J.W.M., van den Hauwe, L., Parizel, P.M. (eds) Spinal Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68483-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68483-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21344-4

  • Online ISBN: 978-3-540-68483-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics