Skip to main content

Characteristics of Mammalian Cells and Requirements for Cultivation

  • Chapter
Cell and Tissue Reaction Engineering

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

This chapter aims at presenting a general overview on the specific characteristics of mammalian cells to those not familiar with cell biology. At first, differences between mammalian cells, plant cells and microbes are discussed. Then consequences for design of bioreactors and processes are also discussed. Different types of mammalian cells (primary cells, permanent (established) cell lines, hybridom cells) are introduced. Techniques required, to get from primary cells to permanent (established) cell lines and the hybridom technique for production of monoclonal antibodies are also briefly outlined. Culture collections and cell banking are discussed with respect to its purpose and the build-up. Appropriate culture media is an essential requirement for successful mammalian cell culture and is therefore introduced in depth. The chapter also focuses on characteristics of cell growth and metabolism. A short introduction to cell metabolism is followed by a detailed discussion on aspects related to modelling of cell growth and metabolism of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

c P :

product concentration

c S :

substrate concentration

d 0,d 1 :

fit parameter

i :

index for substrate

j :

index for product

k d :

cell specific death rate

k d,max :

maximal cell specific death rate

k d,min :

minimal cell specific death rate

k d,P :

kinetic constant for effect of metabolite on cell death

k d,S :

kinetic constant for effect of substrate on cell death

k p :

metabolite inhibition constant

k s :

substrate limitation constant

m:

maintenance term

NH3:

index for undissoziated ammonia

q P :

cell specific production rate

q S :

cell specific substrate uptake rate

q S,max :

maximal cell specific substrate uptake rate

Y x/s :

yield coefficient cell number per mol substrate

ÎĽ:

cell specific growth rate

ÎĽmax :

maximal cell specific growth rate

References

  • Adams D, Korke R, Hu WS (2007) Application of stoichiometric and kinetic analyses to characterize cell growth and product formation. In: Pörtner R (ed) Animal Cell Biotechnology — Methods and Protocols. Humana Press, Clifton, UK

    Google Scholar 

  • Al-Rubeai M, Emery AN, Chalder S (1992) The effect of Pluronic F-68 on hybridoma cells in continuous culture. Appl Microbiol Biotechnol 37: 44–45

    PubMed  Google Scholar 

  • Al-Rubeai M, Singh R (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9: 152–156

    PubMed  Google Scholar 

  • Altamirano C, Illanes A, Casablancas A, Gámez X, CairĂł JJ, GĂłdia F (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17: 1032–1041

    PubMed  Google Scholar 

  • American Type Culture Collection (ATCC). http://www.atcc.org

  • Barnes D, Sato G (1980) Serum-free cell culture: an unifying approach. Cell 22: 649–655

    PubMed  Google Scholar 

  • Batt CB, Kompala SK (1989) A structured modeling framework for the dynamics of hybridoma growth in continuous suspension cultures. Biotechnol Bioeng 34: 515–531

    PubMed  Google Scholar 

  • Bohlen H (1993) Medikamente nach Maβ — Monoklonale Antikörper fĂĽr die Medizin der Zukunft. Bild der Wissenschaften 1: 35–39

    Google Scholar 

  • Bree MA, Dhurjati P, Geoghegan RF, Robnett B (1988) Kinetic modelling of hybridoma cell growth and immunoglobulin production in a large-scale suspension culture. Biotechnol Bioeng 32:1067–1072

    PubMed  Google Scholar 

  • Butler M (1987) Growth limitations in microcarrier cultures. Adv Biochem Eng 34: 57–84

    Google Scholar 

  • Butler M (2004) Animal Cell Culture and Technology — The Basics (2nd edition). Oxford University Press, New York

    Google Scholar 

  • Butler M (2005) Animal cell cultures: Recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68: 283–291

    PubMed  Google Scholar 

  • Butler M, Jenkins H (1989) Nutritional aspects of the growth of animal cells in culture. J Biotechnol 12:97–110

    Google Scholar 

  • Butler M, Spier RE (1984) The effects of glutamine utilisation and ammonia production on the growth of BHK cells in microcarrier culture. J Biotechnol 1: 187–196

    Google Scholar 

  • Chmiel H (1991) Bioprozesstechnik, UTB

    Google Scholar 

  • Cotter TG (1994) Programmed to die: Cell death via apoptosis. In: Spier RE, Griffiths JB, Berthold W (eds) Animal cell technology: products of today, prospects for tomorrow. Butterworth-Heinemann, pp 175–182

    Google Scholar 

  • Cruz HJ, Moreira JL, Carrondo MJT (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66: 104–113

    PubMed  Google Scholar 

  • Dalili M, Sayles GD, Ollis DF (1990) Glutamine-limited batch hybridoma growth and antibody production: experiment and model. Biotechnol Bioeng 36: 74–82

    PubMed  Google Scholar 

  • de Tremblay M, Perrier M, Chavarie C, Archambault J (1992) Optimization of fed-batch culture of hybridoma cells using dynamic programming: single and multi feed case. Bioproc Eng 7: 229–234

    Google Scholar 

  • de Tremblay M, Perrier M, Chavarie C, Archambault J (1993) Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed loop strategies. Bioproc Eng 9: 13–21

    Google Scholar 

  • DeZengotita VM, Kimura R, Miller WM (1998) Effects of CO2 and osmolality on hybridoma cells: growth, metabolism and monoclonal antibody production. Cytotechnol 28: 213–227

    Google Scholar 

  • Dorn-Beinke A, Nittka ST, Neumaier M (2007) Technology and production of murine monoclonal and recombinant antibodies and antibody fragments. In: Pörtner R (ed) Animal Cell Biotechnology — Methods and Protocols. Humana Press, Clifton, UK

    Google Scholar 

  • Doyle A, Griffiths JB (1998) Cell and Tissue Culture: Laboratory Procedures in Biotechnology. Wiley, New York

    Google Scholar 

  • Doyle C, Butler M (1990) The effect of pH on the toxicity of ammonia to a murine hybridoma cell line. J Biotechnol 15: 91–100

    PubMed  Google Scholar 

  • Duval D, Demangel C, Munier-Jolain K, Miosecc S, Geahel I (1991) Factors controlling cell proliferation and antibody production in mouse hybridoma cells: I. Influence of amino acid supply. Biotechnol Bioeng 38: 561–570

    PubMed  Google Scholar 

  • Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130: 432–437

    PubMed  Google Scholar 

  • Edwards CP, Aruffo A (1993) Current applications of COS cell based treatment expression system. Curr Opin Biotechnol 4: 558–563

    PubMed  Google Scholar 

  • EMEA: European Medicine Agency. http://www.emea.eu.ing

  • Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67: 25–34

    PubMed  Google Scholar 

  • European Collection of Animal Cell Culture (ECACC). http://www.ecacc.org.uk

  • Fassnacht D, Rössing S, FranĂ©k F, Al-Rubeai M, Pörtner R (1998) Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotechnol 26: 119–226

    Google Scholar 

  • Fassnacht D, Rössing S, Ghaussy N, Pörtner R (1997) Influence of non-essential amino acids on apoptotic and necrotic death of mouse hybridoma cells in batch cultures. Biotechnol Lett 19: 35–38

    Google Scholar 

  • FDA: U.S. Food and Drug Administration. http://www.fda.gov

  • Fletscher T (2005) Designing culture media for recombinant protein production. BioProcess 1: 30–36

    Google Scholar 

  • Follstad BD, Balcarcel RR, Stephanopolous G, Wang DIC (1999) Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. Biotechnol Bioeng 63: 675–683

    PubMed  Google Scholar 

  • Frahm B, Blank HC, Cornand P, OelĂźner W, Guth U, Lane P, Munack A, Johannsen K, Pörtner R (2002) Determination of dissolved CO2 concentration and CO2 production rate of mammalian cell suspension culture based on off-gas measurement. J Biotechnol 99: 133–148

    PubMed  Google Scholar 

  • Frame KK, Hu WS (1990) Cell volume measurement as an estimation of mammalian cell biomass. Biotechnol Bioeng 36: 191–197

    PubMed  Google Scholar 

  • Frame KK, Hu WS (1991a) Kinetic study of hybridoma cell growth in continuous culture. I. A model for non-producing cells. Biotechnol Bioeng 37: 55–64

    PubMed  Google Scholar 

  • Frame KK, Hu WS (1991b) Kinetic study of hybridoma cell growth in continuous culture. II. behavior of producers and comparison to nonproducers. Biotechnol Bioeng 38: 1020–1028

    PubMed  Google Scholar 

  • FranĂ©k F (1995) Starvation-induced programmed death of hybridoma cells: prevention by amino acid mixtures. Biotechnol Bioeng 45: 86–90

    PubMed  Google Scholar 

  • FranĂ©k F, DolnĂ­ková J (1991a) Hybridoma growth and monoclonal antibody production in ironrich protein-free medium: Effect of nutrient concentration. Cytotechnol 7: 33–38

    Google Scholar 

  • FranĂ©k F, DolnĂ­ková J (1991b) Nucleosomes occurring in protein-free hybridoma cell cultures. Evidence for programmed cell death. FEBS Lett 248: 285–287

    Google Scholar 

  • Freshney R (1994) Culture of Animal Cells. Wiley, New York

    Google Scholar 

  • Gaertner JG, Dhurjati P (1993) Fractional factory study of hybridoma behavior. 2. Kinetics of nutrient uptake and waste production. Biotechnol Prog 9: 309–316

    PubMed  Google Scholar 

  • Gambhir A, Zhang C, Europa A, Hu WS (1999) Analysis of the use of fortified medium in continuous culture of mammalian cells. Cytotechnol 31: 243–254

    Google Scholar 

  • Gawlitzek M, Valley U, Wagner R (1998) Ammonium ion and glucosamine dependent increase of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol Bioeng 57: 518–528

    PubMed  Google Scholar 

  • German Resource Centre for Biological Material (DSMZ): http://www.dsmz.de

  • Glacken MW, Fleischacker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields in cultures of mammalian cells. Biotechnol Bioeng 28: 1376–1389

    PubMed  Google Scholar 

  • Glacken MW, Huang C, Sinskey AJ (1989) Mathematical description of hybridoma culture kinetics. III Simulation of fed-batch bioreactors. J Biotechnol 10: 39–66

    Google Scholar 

  • GĂłdia F, CairĂł JJ (2006) Cell metabolism. In: Ozturk SS and Hu W-S (eds) Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. Taylor & Francis, New York

    Google Scholar 

  • Griffiths JG (1987) Serum and growth factors in cell culture media: an introduction review. Dev Biol Stand 66: 155–160

    PubMed  Google Scholar 

  • Grob D, Lettenbauer C, Eibl R, Meier HP (1998) Vergleich verschiedener Verfahren und Apparate zur Sterilisation von Zellkulturmedien. In: iba (ed) Proceedings zum 9. Heiligenstädter Kolloquium

    Google Scholar 

  • Häggström L (2000) Animal cell metabolism. In: Spier R (ed) Encyclopedia of Cell Technology. Wiley, New York, pp 392

    Google Scholar 

  • Harigae M, Matsumura M, Kataoka H (1994) Kinetic study on HBs-MAb production in continuous cultivation. J Biotechnol 34: 227–235

    PubMed  Google Scholar 

  • Hassel T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture — the effect of lactate and ammonia. Appl Biochem Biotech 30: 29–41

    Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585

    Google Scholar 

  • Hayter PM, Curling EMA, Baines AJ, Jenkins N, Salmon I, Strange PG, Tong JM, Bull AT (1991) Chinese hamster ovary cell growth and interferon production kinetics in stirred batch culture. Appl Microbiol Biotechnol 34: 559–564

    PubMed  Google Scholar 

  • Henzler HJ, Kauling OJ (1993) Oxygenation of cell cultures. Bioproc Eng 9: 61–75

    Google Scholar 

  • Hiller GW, Aeschlimann AD, Clark DS, Blanch HW (1991) A kinetic analysis of hybridoma growth and metabolism in continuous suspension culture on serum-free medium. Biotechnol Bioeng 38: 733–741

    PubMed  Google Scholar 

  • Hiller GW, Clark DS, Blanch HW (1993) Cell retention-chemostat studies of hybridoma cells — analysis of hybrdoma growth and metabolism in continuous suspension culture on serum-free medium. Biotechnol Bioeng 42: 185–195

    PubMed  Google Scholar 

  • Ikonomou L, Schneider YJ, Agathos SN (2003) Insect cell culture for industrial production of recombinant proteins. Appl Microbiol Biotechnol 62: 1–20

    PubMed  Google Scholar 

  • Jeong YH, Wang SS (1995) Role of glutamine in hybridoma cell culture: effects on cell growth, antibody production, and cell metabolism. Enzyme Microb Technol 77: 45

    Google Scholar 

  • Kallel H, Jouini A, Majoul S, Rourou S (2002) Evaluation of various serum and animal protein free media for the production of a veterinary rabies vaccine in BHK-21 cells. J Biotechnol 95:195–204

    PubMed  Google Scholar 

  • Kasche V, Probst K, Maass J (1980) The DNA and RNA content of crude and crystalline trypsin used to trypsinize animal cell cultures: kinetics of trypsinization. Eur J Cell Biol 22: 388

    Google Scholar 

  • Kim JS, Ahn BC, Lim BP, Choi YD, Jo EC (2004) High-level scu-PA production by butyratetreated serum-free culture of recombinant CHO cell line. Biotechnol Prog 20: 1788–1796.

    PubMed  Google Scholar 

  • Kimura R, Miller WM (1997) Glycosylation of CHO-derived recombinant tPA produced under elevated pCO2. Biotechnol Prog 13: 311–317.

    PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting monoclonal antibodies of predifined specifity. Nature 256: 495

    PubMed  Google Scholar 

  • Kurokawa H, Ogawa T, Kamihira M, Park YS, Iijima S, Kobayashi T (1993) Kinetic study of hybridoma metabolism and antibody production in continuous culture using serum-free medium. J Ferment Bioeng 76(2): 128–133

    Google Scholar 

  • Kurokawa H, Park YS, Iijima S, Kobayashi T (1994) Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentration. Biotechnol Bioeng 44: 95–103

    PubMed  Google Scholar 

  • Lee GM, Kaminski MS, Palsson BO (1992) Observations consistent with autocrine stimulation of hybridoma cell growth and implications for large-scale antibody production. Biotechnol Lett 14(4): 257–262

    Google Scholar 

  • Lee GM, Palsson BO (1990) Immobilization can improve the stability of hybridoma antibody productivity in serum-free media. Biotechnol Bioeng 36: 1049–1055

    PubMed  Google Scholar 

  • Linardos TI, Kalogerakis N, Behie LA (1991) The effect of specific growth rate and death rate on monoclonal antibody production in hybridoma chemostat cultures. Can J Chem Eng 69: 429–438

    Google Scholar 

  • Link T, Backstrom M, Graham R, Essers R, Zorner K, Gatgens J, Burchell J, Taylor-Papadimitriou J, Hansson GC, Noll T (2004) Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium. J Biotechnol 110: 51–62

    PubMed  Google Scholar 

  • Linz M, Zeng AP, Wagner R, Deckwer WD (1997) Stoichiometry, kinetics and regulation of glucose and amino acid metabolism of recombinant BHK cell line in batch and continuous cultures. Biotechnol Prog 13: 453–463

    PubMed  Google Scholar 

  • LĂĽdemann I, Pörtner R, Märkl H (1994) Effect of NH3 on the cell growth of a hybridoma cell line. Cytotechnol 14: 11–20

    Google Scholar 

  • LĂĽdemann I, Pörtner R, Schaefer C, Schick K, Ĺ rámková K, Reher K, Neumaier M, FranĂ©k F, Märkl H (1996) Improvement of the culture stability of non-anchorage-dependent animal cells grown in serum-free media through immobilization. Cytotechnol 19: 111–124

    Google Scholar 

  • Maranga L, Goochee CF (2006) Metabolism of PER.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels. Biotechnol Bioeng 94: 139–150

    PubMed  Google Scholar 

  • Matanguihan R, Sajan E, Zachariou M, Olson C, Michaels J, Thrift J, Konstantinov K (2001) Solution to the high dissolved CO2 problem in high-density perfusion culture of mammalian cells. In: Animal Cell Technology: From Target to Market. Kluwer, The Netherlands, pp 399–402

    Google Scholar 

  • Matsumura M, Nayve R, Shimoda M, Motoki M, Kataoka H (1990) Growth inhibition of hybridoma cells by ammonia and its selective removal. In: Kataoka H, Märkl H (eds), Proceedings of the German—Japanese Workshop on Animal Cell Culture Technology, pp 14–28

    Google Scholar 

  • McMeekin TA, Olley JN, Ross T, Ratkowsky DA (1993) Predictive Microbiology: Theory and Application. Research Studies Press, Taunton, UK

    Google Scholar 

  • McQueen A, Bailey JE (1990) Effect of ammonium ion and extracellular pH on hybridoma metabolism and antibody production. Biotechnol Bioeng 35: 1065–1077

    Google Scholar 

  • Mercille S, Massie B (1994) Induction of apoptosis in nurtrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44: 1140–1154

    PubMed  Google Scholar 

  • Miller WM, Wilke CR, Blanch HW (1987) Effects of dissolved oxygen concentration on hybridoma growth and metabolism in continuous culture. J Cell Phys 132: 524–530

    Google Scholar 

  • Miller WM, Wilke CR, Blanch HW (1988) A kinetic analysis of hybridoma growth and metabolism in batch and continuous suspension culture. Effect of nutrient concentration, dilution rate and pH. Biotechnol Bioeng 32: 947–965

    PubMed  Google Scholar 

  • Miller WM, Wilke CR, Blanch HW (1989a) Transient responses of hybridoma cells to nutrient additions in continuous culture: I. Glucose pulse and step changes. Biotechnol Bioeng 33: 477–486

    PubMed  Google Scholar 

  • Miller WM, Wilke CR, Blanch HW (1989b) Transient responses of hybridoma cells to nutrient additions in continuous culture: II. Glutamine pulse and step changes. Biotechnol Bioeng 33: 487–499

    PubMed  Google Scholar 

  • Milstein C (1988) Monoklonale Antikörper. In: Immunsystem, 2. Auflage, Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg

    Google Scholar 

  • Morrow KJ (2007) Improving protein production strategies. GEN 28: 37–39

    Google Scholar 

  • Mostafa SS, Gu X (2003) Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Prog 19: 45–51

    PubMed  Google Scholar 

  • Musielski H, RĂĽger K, Zwanzig M, Lehmann K (1994) Monoclonal antibodies released from viable hybridoma cells at different stages of growth. In: Spier RE, Griffiths JB, Berthold W (eds) Animal Cell Technology: Products of Today, Prospects for Tomorrow. Butterworth-Heinemann, London, pp 485–492

    Google Scholar 

  • Nayve R, Masamichi M, Matsumura M, Kataoka H (1991) Selective removal of ammonia from animal cell culture broth. Cytotechnol 6: 121–130

    Google Scholar 

  • Oh SKW, Chua FKF, Choo ABH (1995) Intracellular responses of productive hybridomas subjected to high osmotic pressure. Biotechnol Bioeng 46: 525–535

    PubMed  Google Scholar 

  • Omase T, Higashiyama KI, Shioya S, Suga KI (1992) Effects of lactate concentration on hybridoma culture in lactate-controlled fed-batch operation. Biotechnol Bioeng 39: 556–564

    Google Scholar 

  • Otzturk SS (2006) Cell culture technology — an overview. In: Ozturk SS, Hu WS (eds) Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. Taylor & Francis, New York

    Google Scholar 

  • Ozturk SS, Palsson BO (1990) Chemical decomposition of glutamine in cell culture media: Effect of media type, pH, and serum concentration. Biotechnol Prog 6: 121–128

    PubMed  Google Scholar 

  • Ozturk SS, Riley MR, Palsson BO (1992) Effects of ammonia and lactate on hybridoma growth, metabolism and antibody production. Biotechnol Bioeng 39: 418–431

    PubMed  Google Scholar 

  • Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y (2003) Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng 84: 332–342.

    PubMed  Google Scholar 

  • Pirt SJ (1985) Principles of Microbe and Cell Cultuvation. Blackwell, Oxford

    Google Scholar 

  • Pörtner R (1998) Reaktionstechnik der Kultur tierischer Zellen. Shaker, Aachen

    Google Scholar 

  • Pörtner R, Bohmann A, LĂĽdemann I, Märkl H (1994) Estimation of specific glucose uptake rates in cultures of hybridoma cells. J Biotechnol 34: 237–246

    PubMed  Google Scholar 

  • Pörtner R, LĂĽdemann I, Bohmann A, Schilling A, Märkl H (1995) Evaluation of process strategies for efficient cultivation of hybridoma cells based on mathematical models. In: Beuvery EC et al. (eds) Animal Cell Technology: Developments Towards the 21st Century, Kluwer, The Netherlands. pp 829–833

    Google Scholar 

  • Pörtner R, Schäfer TH (1996) Modelling hybridoma cell growth and metabolism — A comparison of selected models and data. J Biotechnol 49: 119–135

    PubMed  Google Scholar 

  • Pörtner R, Schilling A, LĂĽdemann I, Märkl H (1996) High density fed-batch cultures for hybridoma cells performed with the aid of a kinetic model. Bioproc Eng 15: 117–124

    Google Scholar 

  • Ray NG, Karkare SB, Runstadler PW (1989) Cultivation of hybridoma cells in continuous cultures: Kinetics of growth and product formation. Biotechnol Bioeng 33: 724–730

    PubMed  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254: 2669–2676

    PubMed  Google Scholar 

  • Rensing L, Cornelius G (1988) Grundlagen der Zellbiologie, UTB

    Google Scholar 

  • Reuveny S, Velez D, Mamillan JD, Miller L (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Meth 86: 53–59

    Google Scholar 

  • Robinson DK, Memmert KW (1991) Kinetics of recombinant immunoglobulin production by mammalian cells in continuous culture. Biotechnol Bioeng 38: 972–976

    PubMed  Google Scholar 

  • Ryll T, Valley U, Wagner R (1994) Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotechnol Bioeng 44: 184–193

    PubMed  Google Scholar 

  • Ryu JS, Lee GM (1997) Effect of hypoosmotic stress on hybridoma cell growth and antibody production. Biotechnol Bioeng 55: 565–570.

    Google Scholar 

  • Seamans TC, Hu WS (1990) Kinetics of growth and antibody production by a hybridoma cell line in a perfusion culture. J Ferment Bioeng 70: 241–245

    Google Scholar 

  • Shirai Y, Hashimoto K, Takamatsu H (1992) Growth kinetics of hybridoma cells in high density culture. J Ferment Bioeng 73: 159–165

    Google Scholar 

  • Siano SA, Muthrasan R (1991) NADH Fluorescence and oxygen uptake responses of hybridoma cultures to substrate pulse and step changes. Biotechnol Bioeng 37: 141–159

    PubMed  Google Scholar 

  • Sinacore MS, Drapeau D, Adamson SR (2000) Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol 15: 249–257.

    PubMed  Google Scholar 

  • Thorens B, Vassalli P (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without effecting secretion. Nature 321: 618–620

    PubMed  Google Scholar 

  • Tritsch GL, Moore GE (1962) Spontaneous decomposition of glutamine in cell culture media. Exp Cell Res 28: 360–364

    PubMed  Google Scholar 

  • Tsuchiya HM, Fredrickson AG, Avis R (1966) Dynamics of microbial cell populations. Adv Chem Eng 6: 125–206

    Google Scholar 

  • Tziampazis E, Sambanis A (1994) Modelling cell culture processes. Cytotechnol 14: 191–204

    Google Scholar 

  • Voedisch B, Menzel C, Jordan E, El-Ghezal A, Schirrmann T, Hust M, Jostock T (2005) Expression rekombinanter Proteinpharmazeutika. transkript 7: 47–51

    Google Scholar 

  • Vriezen N, Romein B, Luyben KCHAM, van Dijken JP (1997) Effects of glutamine supply on growth and metabolism of mammalian cells in chemostat culture. Biotechnol Bioeng 54: 272–286

    PubMed  Google Scholar 

  • Wagner R (1997) Metabolic control of animal cell culture processes. In: Hauser H, Wagner R (eds) Mammalian Cell Biotechnology in Protein Production. Walter de Gruyeter, Berlin, pp 193

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393–1397

    PubMed  Google Scholar 

  • Zanghi J, Schmelzer A, Mendoza R, Knop R, Miller W (1999) Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO2 or pH. Biotechnol Bioeng 65: 182–191

    PubMed  Google Scholar 

  • Zeng AP, Bi JX (2006) Cell culture kinetics and modeling. In: Ozturk SS, Hu WS (eds) Cell Culture Technology for Pharmaceutical and Cell-Based Therapies. Taylor & Francis, New York

    Google Scholar 

  • Zengotita de VM, Schmelzer AE, Miller WM (2002) Characterization of hybridoma cell responses to elevated pCO2 and osmolality: Intracellular pH, cell size, apoptosis, and metabolism. Biotechnol Bioeng 77: 369–380

    Google Scholar 

  • Zhang Z, Chisti Y, Moo-Young M (1995) Effects of the hydrodynamic environment and shear protectants on survival of erythrocytes in suspension. J Biotechnol 43: 33–40

    PubMed  Google Scholar 

  • Zhu MM, Goyal A, Rank DL, Gupta SK, Vanden Boom T, Lee SS (2005) Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21: 70–77

    PubMed  Google Scholar 

  • Zielke HR, Oznard PT, Tildon JT, Sevdalain DA, Cornblath M (1978) Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J Cell Phys 95: 41–48

    Google Scholar 

Complementary Reading

  • Al-Rubeai M, Singh R (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9: 152–156

    PubMed  Google Scholar 

  • Butler M (2004) Animal Cell Culture and Technology — The Basics (2nd edition). Oxford University Press, New York

    Google Scholar 

  • Doyle A, Griffiths JB (1998) Cell and Tissue Culture: Laboratory Procedures in Biotechnology. Wiley, New York

    Google Scholar 

  • Fletscher T (2005) Designing culture media for recombinant protein production. BioProcess 1: 30–36

    Google Scholar 

  • Freshney R (1994) Culture of animal cells. Wiley, New York

    Google Scholar 

  • Häggström L (2000) Animal cell metabolism. In: Spier R (ed) Encyclopedia of Cell Technology. Wiley, New York, pp 392

    Google Scholar 

  • Henzler HJ, Kauling OJ (1993) Oxygenation of cell cultures. Bioproc Eng 9: 61–75

    Google Scholar 

  • Ozturk SS, Hu WS (eds) (2006) Cell Culture Technology For Pharmaceutical and Cell-Based Therapies. Taylor & Francis, New York

    Google Scholar 

  • Pörtner R (1998) Reaktionstechnik der Kultur tierischer Zellen. Shaker, Aachen

    Google Scholar 

  • Pörtner R (ed) (2007) Animal Cell Biotechnology — Methods and Protocols. Humana Press, Clifton, UK

    Google Scholar 

  • Tziampazis E, Sambanis A (1994) Modelling cell culture processes. Cytotechnol 14: 191–204

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22: 1393–1397

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pörtner, R. (2009). Characteristics of Mammalian Cells and Requirements for Cultivation. In: Cell and Tissue Reaction Engineering. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68182-3_2

Download citation

Publish with us

Policies and ethics