Skip to main content

Functional MRI Limitations and Aspirations

  • Chapter
Neural Correlates of Thinking

Part of the book series: On Thinking ((ONTHINKING,volume 1))

Abstract

Most would agree that knowing precisely what was happening in the brain during the act of thinking would help in our pursuit to understand what thinking really is. This chapter describes the basics, limits, and future directions of one of the more effective tools we have to observe the human brain while it is functioning — functional MRI. Functional MRI emerged in the early 1990s, and has since grown explosively in utility. In this chapter, an in-depth exploration is carried out of what limits functional MRI to a spatial resolution of millimeters and a temporal resolution of seconds. In addition, issues of how sensitive functional MRI is in detecting brain activity and how deeply we can interpret the signal changes are explored. Lastly, the chapter ends with a discussion on how imaging might be essential, or perhaps irrelevant, to understanding thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaro E, Williams SCR, Shergill SS, Fu CHY, MacSweeney M, Picchioni MM, Brammer MJ, McGuire PK (2002) Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects. J Magn Reson Imaging 16:497–510

    Article  PubMed  Google Scholar 

  • Bandettini PA (1999) The temporal resolution of functional MRI. In: Moonen C, Bandettini P (eds) Functional MRI. Springer, Berlin Heidelberg New York, pp 205–220

    Google Scholar 

  • Bandettini PA, Wong EC (1997) A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed 10:197–203

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain-function during task activation. Magn Reson Med 25:390–397

    Article  PubMed  CAS  Google Scholar 

  • Bandettini PA, Petridou N, Bodurka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Reson 29:65–88

    Article  Google Scholar 

  • Beauregard M (2007) Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol 81:218–236

    Article  PubMed  Google Scholar 

  • Bellgowan PSF, Saad ZS, Bandettini PA (2003) Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width. Proc Natl Acad Sci U S A 100:1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Bellgowan PSF, Bandettini PA, Van Gelderen P, Martin A, Bodurka J (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 29:1244–1251

    Article  PubMed  Google Scholar 

  • Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual-cortex by magnetic-resonance-imaging. Science 254:716–719

    Article  PubMed  CAS  Google Scholar 

  • Berns GS (2004) Something funny happened to reward. Trends Cogn Sci 8:193–194

    Article  PubMed  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Hyde JS (1994) Effects of stimulus rate on signal response during functional magnetic-resonance-imaging of auditory-cortex. Cogn Brain Res 2:31–38

    Article  CAS  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93

    Article  PubMed  CAS  Google Scholar 

  • Birn RM, Bandettini PA (2005) The effect of stimulus duty cycle and “off” duration on BOLD response linearity. Neuroimage 27:70–82

    Article  PubMed  Google Scholar 

  • Birn RM, Smith MA, Jones TB, Bandettini PA (2008) The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40:644–654

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  PubMed  CAS  Google Scholar 

  • Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RG (1992) Dynamic mapping of the human visual-cortex by high-speed magnetic-resonance-imaging. Proc Natl Acad Sci U S A 89:11069–11073

    Article  PubMed  CAS  Google Scholar 

  • Bodurka J, Ye F, Petridou N, Murphy K, Bandettini A (2007) Mapping the MRI voxel volume in which thermal noise matches physiological noise — implications for fMRI. Neuroimage 34:542–549

    Article  PubMed  CAS  Google Scholar 

  • Brass M, Haggard P (2007) To do or not to do: the neural signature of self-control. J Neurosci 27:9141–9145

    Article  PubMed  CAS  Google Scholar 

  • Braver T, Reynolds JR, Donaldson DI (2003) Neural mechanisms of transient and sustained cognitive control during task switching, Neuron 39:713–726

    Article  PubMed  CAS  Google Scholar 

  • Buchel C, Friston KJ (1998) Dynamic changes in effective connectivity characterized by variable parameter regression and Kaiman filtering. Hum Brain Mapp 6:403–408

    Article  PubMed  CAS  Google Scholar 

  • Buckner RL, Bandettini PA, Ocraven KM, Savoy RL, Petersen SE, Raichle ME, Rosen BR (1996) Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A 93:14878–14883

    Article  PubMed  CAS  Google Scholar 

  • Buracas GT, Liu TT, Buxton RB, Frank LR, Wong EC (2008) Imaging periodic currents using alternating balanced steady-state free precession. Magn Reson Med 59:140–148

    Article  PubMed  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47

    Article  PubMed  CAS  Google Scholar 

  • Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI. Neuroimage 39:87–106

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    Article  PubMed  CAS  Google Scholar 

  • Chiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P (2007) A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37:808–820

    Article  PubMed  Google Scholar 

  • Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, Kim SG (2004) Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. Neuroimage 23:613–624

    Article  PubMed  Google Scholar 

  • Courtney SM, Ungerleider BG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611

    Article  PubMed  CAS  Google Scholar 

  • Cox DD, Savoy RL (2003) Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19:261–270

    Article  PubMed  Google Scholar 

  • Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic-resonance-imaging. Magn Reson Med 33:230–236

    Article  PubMed  CAS  Google Scholar 

  • Dale AM, Buckner RL (1997) Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp 5:329–340

    Article  PubMed  CAS  Google Scholar 

  • Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839

    Article  PubMed  CAS  Google Scholar 

  • DeCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JDE, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 102:18626–18631

    Article  PubMed  CAS  Google Scholar 

  • Deyoe EA, Bandettini P, Neitz J, Miller D, Winans P (1994) Functional magnetic-resonance-imaging (FMRI) of the human brain. J Neurosci Methods 54:171–187

    Article  PubMed  CAS  Google Scholar 

  • De Zwart JA, Ledden PJ, Van Gelderen P, Bodurka J, Chu R, Duyn JH (2004) Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 tesla. Magn Reson Med 51:22–26

    Article  PubMed  Google Scholar 

  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM (1999) Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 7:89–97

    Article  PubMed  CAS  Google Scholar 

  • Engel SA, Rumelhart DE, Wandeil BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) FMRI of human visual-cortex. Nature 369:525

    Article  PubMed  CAS  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26:11821–11832

    Article  PubMed  CAS  Google Scholar 

  • Gallagher HL, Happe F, Brunswick N, Fletcher PC, Frith U, Frith CD (2000) Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38:11–21

    Article  PubMed  CAS  Google Scholar 

  • Goldberg II, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329–339

    Article  PubMed  CAS  Google Scholar 

  • Goldberg I, Ullman S, Malach R (in press) Neuronal correlates of “free will” are associated with regional specialization in the human intrinsic/default network. Consciousness Cogn

    Google Scholar 

  • Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14:210–217

    Article  PubMed  CAS  Google Scholar 

  • Grill-Spector K, Malach R (2001) fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol 107:293–321

    Article  CAS  Google Scholar 

  • Handwerker DA, Gazzaley A, Inglis BA, D’Esposito M (2007) Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28:846–859

    Article  PubMed  Google Scholar 

  • Hawkins J, Blakeslee S (2004) On intelligence. Holt, New York

    Google Scholar 

  • Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and over-lapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Haynes JD, Rees G (2005a) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8:686–691

    Article  PubMed  CAS  Google Scholar 

  • Haynes JD, Rees G (2005b) Predicting the stream of consciousness from activity in human visual cortex. Curr Biol 15:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Haynes JD, Lotto RB, Rees G (2004) Responses of human visual cortex to uniform surfaces. Proc Natl Acad Sci U S A 101:4286–4291

    Article  PubMed  CAS  Google Scholar 

  • Haynes JD, Driver J, Rees G (2005) Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46:811–821

    Article  PubMed  CAS  Google Scholar 

  • Heekeren HR, Wartenburger I, Schmidt H, Schwintowski HP, Villringer A (2003) An fMRI study of simple ethical decision-making. Neuroreport 14:1215–1219

    Article  PubMed  Google Scholar 

  • Hennig J, Janz C, Speck O, Ernst T (1997) Is there a different type of MR-contrast in the early phase of functional activation? Adv Exp Med Biol 2:35–42

    Google Scholar 

  • Henson RNA, Price CJ, Rugg MD, Turner R, Friston KJ (2002) Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. Neuroimage 15:83–97

    Article  PubMed  CAS  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42:849–863

    Article  PubMed  CAS  Google Scholar 

  • Hu XP, Le TH, Ugurbil K (1997) Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med 37:877–884

    Article  PubMed  CAS  Google Scholar 

  • Jochimsen TH, Norris DG, Mildner T, Moller HE (2004) Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T. Magn Reson Med 52:724–732

    Article  PubMed  Google Scholar 

  • Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8:679–685

    Article  PubMed  CAS  Google Scholar 

  • Kay KN, Naselaris T, Prenger RJ, Gallant JL (2008) Identifying natural images from human brain activity. Nature 452:352–355

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Richter W, Ugurbil K (1997) Limitations of temporal resolution in functional MRI. Magn Reson Med 37:631–636

    Article  PubMed  CAS  Google Scholar 

  • Kraus RH Jr, Volegov P, Matlachov A, Espy M (2008) Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage 39:310–317

    Article  PubMed  Google Scholar 

  • Kriegeskorte N, Bandettini P (2007a) Analyzing for information, not activation, to exploit high-resolution fMRI. Neuroimage 38:649–662

    Article  PubMed  Google Scholar 

  • Kriegeskorte N, Bandettini P (2007b) Combining the tools: activation- and information-based fMRI analysis. Neuroimage 38:666–668

    Article  PubMed  Google Scholar 

  • Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868

    Article  PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic-resonance-imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  PubMed  CAS  Google Scholar 

  • Langleben DD (2008) Detection of deception with fMRI: Are we there yet? Leg Criminol Psychol 13:1–9

    Article  Google Scholar 

  • Langleben DD, Dattilio FM, Guthei TG (2006) True lies: delusions and lie-detection technology. J Psychiatry Law 34:351–370

    Google Scholar 

  • Le Bihan D, Urayama SI, Aso T, Hanakawa T, Fukuyama H (2006) Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci USA 103:8263–8268

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Merkle H, Augath M, Trinath T, Ugurbil K (2002) Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron 35:227–242

    Article  PubMed  CAS  Google Scholar 

  • Lu HZ, Golay X, Pekar JJ, van Zijll PCM (2003) Functional magnetic resonance Imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    Article  PubMed  Google Scholar 

  • Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow H, Haider P, Brandeis D, Soellinger M, de Zanche N, Luechinger R, Boesiger P (2007) Heart beats brain: the problem of detecting alpha waves by neuronal current imaging in joint EEG-MRI experiments. Neuroimage 37:149–163

    Article  PubMed  CAS  Google Scholar 

  • Matheiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512:555–566

    Article  Google Scholar 

  • Matlachov AN, Volegov PL, Zotev VS, Espy MA, Mosher JC, Kraus RH Jr (2007) Using ultralow field nuclear magnetic resonance for direct neural current measurements. Int Congr Ser 1300:582–585

    Article  Google Scholar 

  • McCarthy G, Luby M, Gore J, GoldmanRakic P (1997) Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J Neurophysiol 77:1630–1634

    PubMed  CAS  Google Scholar 

  • Menon RS, Ogawa S, Ugurbil K (1995) High-temporal-resolution studies of the human primary visual-cortex at 4 T — teasing out the oxygenation contribution in FMRI. Int J Imaging Syst Technol 6:209–215

    Article  Google Scholar 

  • Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77:2780–2787

    PubMed  CAS  Google Scholar 

  • Menon RS, Luknowsky DC, Gati JS (1998) Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci U S A 95:10902–10907

    Article  PubMed  CAS  Google Scholar 

  • Moeller S, Van De Moortele PF, Goerke U, Adriany G, Ugurbil K (2006) Application of parallel imaging to fMRI at 7 tesla utilizing a high 1D reduction factor. Mag Reson Med 56:118–129

    Article  Google Scholar 

  • Montague PR, Berns GS, Cohen JD, McClure SM, Pagnoni G, Dhamala M, Wiest MC, Karpov I, King RD, Apple N, Fisher RE (2002) Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage 16:1159–1164

    Article  PubMed  Google Scholar 

  • Moon C.-H., Fukuda M, Park S.-H., Kim S.-G. (2007a) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27(26): 6892–6902

    Article  PubMed  CAS  Google Scholar 

  • Moon CH, Fukuda M, Park SH, Kim SG (2007b) Neural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution. J Neurosci 27:6892–6902

    Article  PubMed  CAS  Google Scholar 

  • Moran JM, Wig GS, Adams RB Jr, Janata P, Kelley WM (2004) Neural correlates of humor detection and appreciation. Neuroimage 21:1055–1060

    Article  PubMed  Google Scholar 

  • Murphy K, Bodurka J, Bandettini PA (2007) How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration. Neuroimage 34:565–574

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Singh KD (2008) Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex. Neuroimage 40:1552–1560

    Article  PubMed  Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM (1990) Magnetic-resonance-imaging of blood-vessels at high fields — invivo and invitro measurements and image simulation. Magn Reson Med 16:9–18

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990a) Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990b) Oxygenation-sensitive contrast in magnetic-resonance image of rodent brain at high magnetic-fields. Magn Reson Med 14:68–78

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation — functional brain mapping with magnetic-resonance-imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic-resonance-imaging — a comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Stepnoski R, Chen W, Zhuo XH, Ugurbil K (2000) An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc Natl Acad Sci U S A 97:11026–11031

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Lee SY (2007) Effects of neuronal magnetic fields on MRI: numerical analysis with axon and dendrite models. Neuroimage 35:531–538

    Article  PubMed  Google Scholar 

  • Park TS, Lee SY, Park JH, Lee SY (2004) Effect of nerve cell currents on MRI images in snail ganglia. Neuroreport 15:2783–2786

    Article  PubMed  Google Scholar 

  • Parkes LM, De Lange FP, Fries P, Toni I, Norris DG (2007) Inability to directly detect magnetic field changes associated with neuronal activity. Magn Reson Med 57:411–416

    Article  PubMed  Google Scholar 

  • Peissig JJ, Tarr MJ (2007) Visual object recognition: Do we know more now than we did 20 years ago? Annu Rev Psychol 58:75–96

    Article  PubMed  Google Scholar 

  • Phillips H (2004) Private thoughts, public property. New Sci 183:38–41

    Google Scholar 

  • Poznanski RR, Riera JJ (2006) fMRI models of dendritic and astrocytic networks. J Integr Neurosci 5:273–326

    Article  PubMed  Google Scholar 

  • Preibisch C, Wallenhorst T, Heidemann R, Zanella FE, Lanfermann H (2008) Comparison of parallel acquisition techniques generalized autocalibrating partially parallel acquisitions (GRAPPA) and modified sensitivity encoding (mSENSE) in functional MRI (fMRI) at 3T. J Magn Reson Imaging 27:590–598

    Article  PubMed  Google Scholar 

  • Raichle M, Snyder A (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Richter W, Ugurbil K, Georgopoulos A, Kim SG (1997) Time-resolved fMRI of mental rotation. Neuroreport 8:3697–3702

    Article  PubMed  CAS  Google Scholar 

  • Saxe R, Kanwisher N (2003) People thinking about thinking people: the role of the temporoparietal junction in “theory of mind”. Neuroimage 19:1835–1842

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic-resonance-imaging. Science 268:889–893

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Pfeuffer J, Van de Moortele PF, Adriany G, Hu XP, Ugurbil K (2002) Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36:1195–1210

    Article  PubMed  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 tesla. Neuroimage 35:539–552

    Article  PubMed  Google Scholar 

  • Singewald N (2007) Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 31:18–40

    Article  PubMed  Google Scholar 

  • Singh M, Sungkarat W (2005) A novel approach to image neural activity directly by MRI. Proc SPIE 5746 (I), art. no. 15, 109–118

    Article  Google Scholar 

  • Singh KD, Barnes GR, Hillebrand A, Forde EME, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16:103–114

    Article  PubMed  Google Scholar 

  • Smirnakis SM, Schmid MC, Weber B, Tolias AS, Augath M, Logothetis NK (2007) Spatial specificity of BOLD versus cerebral blood volume fMRI for mapping cortical organization. J Cereb Blood Flow Metab 27:1248–1261

    Article  PubMed  Google Scholar 

  • Thomason ME, Foland LC, Glover GH (2007) Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp 28:59–68

    Article  PubMed  Google Scholar 

  • Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26:243–250

    Article  PubMed  CAS  Google Scholar 

  • Truong TK, Avram A, Song AW (2008) Lorentz effect imaging of ionic currents in solution. J Magn Reson 191:93–99

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Lebihan D, Moonen CTW, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22:159–166

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312

    Article  PubMed  CAS  Google Scholar 

  • Vogeley K, Bussfeld P, Newen A, Herrmann S, Happe F, Falkai P, Maier W, Shah NJ, Fink GR, Zilles K (2001) Mind reading: neural mechanisms of theory of mind and self-perspective. Neuroimage 14:170–181

    Article  PubMed  CAS  Google Scholar 

  • Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3:255–274

    Article  PubMed  Google Scholar 

  • Wang JJ, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003) Arterial spin labeling perfusion AM with very low task frequency. Magn Reson Med 49:796–802

    Article  PubMed  Google Scholar 

  • Watson KK, Matthews BJ, Allman JM (2007) Brain activation during sight gags and language-dependent humor. Cereb Cortex 17:314–324

    Article  PubMed  Google Scholar 

  • Wild B, Rodden FA, Rapp A, Erb M, Grodd W, Ruch W (2006) Humor and smiling: cortical regions selective for cognitive, affective, and volitional components. Neurology 66:887–893

    Article  PubMed  CAS  Google Scholar 

  • Wildgruber D, Ackermann H, Kreifelts B, Ethofer T (2006) Cerebral processing of linguistic and emotional prosody: fMRI studies. Prog Brain Res 156:249–268

    Article  PubMed  CAS  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic-resonance-imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fox PT, Gao JH (2003) Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging. Hum Brain Mapp 20:41–49

    Article  PubMed  CAS  Google Scholar 

  • Yablonskiy DA, Ackerman JJH, Raichle ME (2000a) Erratum: Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc Natl Acad Sci U S A 97:9819

    Article  CAS  Google Scholar 

  • Yablonskiy DA, Ackerman JJH, Raichle ME (2000b) Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc Natl Acad Sci U S A 97:7603–7608

    Article  PubMed  CAS  Google Scholar 

  • Yacoub E, Ugurbil K, Harel N (2006) Detection of orientation specific activation zones in human V1 using fMRI. Paper presented at the ISMRM 14th Scientific Meeting, Seattle

    Google Scholar 

  • Yacoub E, Shmuel A, Logothetis N, Ugurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn spin echo BOLD functional MRI at 7 tesla. Neuroimage 37:1161–1177

    Article  PubMed  Google Scholar 

  • Yurgelun-Todd DA, Ross AJ (2006) Functional magnetic resonance imaging studies in bipolar disorder. CNS Spectr 11:287–297

    PubMed  Google Scholar 

  • Zald DH (2003) The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Rev 41:88–123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Bandettini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandettini, P.A. (2009). Functional MRI Limitations and Aspirations. In: Kraft, E., Gulyás, B., Pöppel, E. (eds) Neural Correlates of Thinking. On Thinking, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68044-4_2

Download citation

Publish with us

Policies and ethics