Skip to main content

Nutrient Cycling in Forests and Heathlands: an Ecosystem Perspective from the Water-Limited South

  • Chapter
Nutrient Cycling in Terrestrial Ecosystems

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

Nutrient cycling in forests and to a lesser extent, in heathlands, has been regularly and thoroughly reviewed, especially in the past 15 or so years. For example, there have been numerous major projects, conferences and meetings focused on nutrient cycling in forests since 1990 (e.g. Boyle and Powers 2001; Nilsson et al. 1995; Schultze et al. 2000). These compendia are complemented by nutrient cycling contributions to more broadly based meetings (e.g. to Press et al. 1999). Seminal texts on biogeochemistry such as that by Schlesinger (1997) are essential reading and deal with forests, woodlands, shrublands and heathlands in varying detail. More recent works by Melillo et al. (2003), Schultze et al. (2001) and Vitousek (2005) are focused on biogeochemistry and global change. Even encyclopaedic treatments of aspects of nutrient cycling in forests are now available (e.g. Burley et al. 2005; Evans 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Google Scholar 

  • Adams MA (1996) Distribution of eucalypts in Australian landscapes: landforms, soils, fire and nutrition. In: Attiwill PM, Adams MA (eds) Nutrition of Eucalypts. CSIRO, Melbourne, pp 61–76

    Google Scholar 

  • Adams MA, Attiwill PM (1991) Nutrient balance in forests of northern Tasmania. I. Atmospheric inputs and within stand cycles. For Ecol Manage 44:93–113

    Google Scholar 

  • Adams MA, Iser J, Keleher AD, Cheal DC (1994) Nitrogen and phosphorus availability and the role of fire in heathlands at Wilsons Promontory. Aust J Bot 42:269–281

    CAS  Google Scholar 

  • Adams MA, Bell TL, Pate JS (2002) Phosphorus sources and availability modify growth and distribution of root clusters and nodules of native Australian legumes. Plant Cell Environ 25:837–850

    CAS  Google Scholar 

  • Adams MA, Ineson P, Binkley D, Cadisch G, Tokuchi N, Scholes M, Hicks K (2004) Excess nitrogen and ecosystem function: toward a global perspective. Ambio 33:530–536

    PubMed  Google Scholar 

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Aerts R (1999) Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J Exp Bot 50:29–37

    CAS  Google Scholar 

  • Aerts R, Chapin III FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    CAS  Google Scholar 

  • Archer S, Boutton TW, Hibbard KA (2001) Trees in grasslands: biogeochemical consequences of woody plant expansion. In: Schulze E-D, Heinman M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 115–137

    Google Scholar 

  • Attiwill PM, Adams MA (1993) Tansley Review No 50: Nutrient cycling in forests. New Phytol 124:561–582

    CAS  Google Scholar 

  • Attiwill PM, Adams MA (eds) (1996) Nutrition of the Eucalypts. CSIRO, Collingwood

    Google Scholar 

  • Attiwill PM, Leeper GW (1987) Forest soils and nutrient cycles. Melbourne University Press, Carlton

    Google Scholar 

  • Bell TL, Pate JS (1996) Nitrogen and phosphorus nutrition in mycorrhizal Epacridaceae of southwest Australia. Ann Bot 77:389–397

    CAS  Google Scholar 

  • Berendse F, Bobbink R, Rouwenhorst G (1989) A comparative study on nutrient cycling in wet heathland ecosystem: I. Litter decomposition and nutrients mineralization. Oecologia 78:338–348

    Google Scholar 

  • Berendse F, Oomes MJM, Altena HJ, de Visser W (1994) A comparative study of nitrogen flows in two similar meadows affected by different groundwater levels. J Ecol 31:40–48

    CAS  Google Scholar 

  • Binkley D (2005) How nitrogen-fixing trees change soil carbon. In: Binkley D, Menyailo O (eds) Tree species effects on soils: implications for global change. Springer, Dordrecht Berlin New York, pp 155–164

    Google Scholar 

  • Binkley D, Giardina C, Bashkin M (2000) Soil phosphorus pools and supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia falcataria. For Ecol Manage 128:241–247

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    PubMed  CAS  Google Scholar 

  • Bowman DMJS, McLean AR, Crowden RK (1986) Vegetation-soil relations in the lowlands of south-west Tasmania. Aust J Ecol 11:141–53

    Google Scholar 

  • Boyle JR, Powers RF (eds) (2001) Forest soils and ecosystem sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2002) Biochemistry and molecular biology of plants. Wiley, New York

    Google Scholar 

  • Burley J, Evans J, Youngquist J (eds) (2005) Encyclopedia of forest sciences, vols 1–4. Academic, London

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol 11:233–260

    CAS  Google Scholar 

  • Chapman SK, Langly JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:27–34

    PubMed  CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don). Soil Biol Biochem 34:487–499

    CAS  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J, Holland EA (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Google Scholar 

  • Cookson WR, Müller C, O’Brien PA, Murphy DV, Grierson PF (2006) Nitrogen dynamics in an Australian semi-arid grassland soil. Ecology 87:2047–2057

    PubMed  CAS  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    CAS  Google Scholar 

  • Evans J (ed) (2001) The forests handbook, vol 2. Blackwell, Oxford

    Google Scholar 

  • Garnett TP, Shabala SN, Smethurst PJ, Newman IA (2001) Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots. Plant Soil 236:55–62

    CAS  Google Scholar 

  • Garnett TP, Shabala SN, Smethurst PJ, Newman IA (2003) Kinetics of ammonium and nitrate uptake by eucalypt roots and associated proton fluxes measured using ion selective microelectrodes. Funct Plant Biol 30:1165–1176

    CAS  Google Scholar 

  • George TS, Turner BL, Gregory PJ, Cade-Menun BJ, Richardson AE (2006) Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere. Eur J Soil Sci 57:47–57

    CAS  Google Scholar 

  • Gifford RM, Barrett DJ, Lutze JL, Samarakoon AB (1996) Agriculture and global change: scaling direct carbon dioxide impacts and feedbacks through time. In: Walker B, Steffen W (eds) Global change and terrestrial ecosystems. International Geosphere-Biosphere Programme, Cambridge

    Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Google Scholar 

  • Goodale CL, Aber JD, Vitousek PM (2003) An unexpected nitrate decline in New Hampshire streams. Ecosystems 6:75–86

    CAS  Google Scholar 

  • Grierson PF, Adams MA (2000) Plant species affect acid phosphatase, ergosterol and microbial P in a jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia. Soil Biol Biochem 32:1817–1827

    CAS  Google Scholar 

  • Güsewell S (2004) Tansley Review. N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    PubMed  CAS  Google Scholar 

  • Handreck KA (1997) Phosphorus requirements of Australian native plants. Aust J Soil Res 35:241–289

    Google Scholar 

  • Hawkins H-J, Wolf G, Stock WD (2005) Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral nitrogen soils? Ann Bot 96:1275–1282

    PubMed  CAS  Google Scholar 

  • Hedin LO (2004) Global organization of terrestrial plant-nutrient interactions. Proc Natl Acad Sci USA 101:10849–10850

    PubMed  CAS  Google Scholar 

  • Heldt HW (1997) Plant biochemistry and molecular biology. Oxford University Press

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003a) Nitrogen and climate change. Science 302:1512–1513

    PubMed  CAS  Google Scholar 

  • Hungate BA, Naiman RJ, Apps M, Cole JJ, Moldan B, Satake K, Stewart JWB, Victoria R, Vitousek PM (2003b) Disturbance and element interactions. In: Melillo JM, Field CB, Moldan B (eds) Interactions of the major biogeochemical cycles, global change and human impacts. Island, Washington, pp 47–62

    Google Scholar 

  • Jackson WD (2000) Nutrient stocks in Tasmanian vegetation and approximate losses due to fire. Pap Proc R Soc Tasmania 134:1–18

    Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biol Biochem 37:413–423

    CAS  Google Scholar 

  • Judd TS, Attiwill PM, Adams MA (1996) Nutrient concentrations in Eucalyptus: a synthesis in relation to differences between taxa, sites and components. In: Attiwill PM, Adams MA (eds) Nutrition of Eucalypts. CSIRO, Melbourne, pp 249–258

    Google Scholar 

  • Jurskis V (2000) Vegetation changes since European settlement of Australia: an attempt to clear up some burning issues. Aust For 63:166–173

    Google Scholar 

  • Jurskis V (2005) Eucalypt decline in Australia and a general concept of tree decline and dieback. Forest Ecol Manage 215:1–20

    Google Scholar 

  • Jurskis V, Turner J (2002) Eucalypt decline in eastern Australia: a simple model. Aust Forestry 65:81–92

    Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizzia trees. Ecology 81:3267–3273

    Google Scholar 

  • Keay J, Bettenay E (1969) Concentrations of major nutrient elements in vegetation from a portion of the Western Australian arid zone. J R Soc West Aust 52:109–118

    CAS  Google Scholar 

  • Kerkhoff AJ, Enquist BJ (2006) Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol Lett 9:419–427

    PubMed  Google Scholar 

  • Kitayama K (2005) Comment on “Ecosystem properties and forest decline in contrasting longterm chronosequences”. Science 308:633

    PubMed  CAS  Google Scholar 

  • Knops JMH, Bradley KL, Wedin DA (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Google Scholar 

  • Körner C (2003) Limitation and stress-always or never? J Veg Sci 14:141–143

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic, New York

    Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    CAS  Google Scholar 

  • Lambers H, Colmer TD (2005) Root physiology: from gene to function. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Li Z, Kurz WA, Apps MJ, Beukerna SJ (2003) Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP. Can J For Res 33:126–136

    Google Scholar 

  • Lloyd J, Bird MI, Veenendaal EM, Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest response to increasing CO2 concentrations? In: Schulze E-D, Heinman M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 95–114

    Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA (2002) Control of nitrogen loss from forested watersheds by soil carbon:nitrogen ratio and tree species composition. Ecosystems 5:712–718

    CAS  Google Scholar 

  • Luyssaert S, Staelens J, De Schriver A (2005) Does the commonly used estimator of nutrient resorption in tree foliage actually measure what it claims to? Oecologia 144:177–186

    PubMed  Google Scholar 

  • Manders PT (1990) Fire and other variables as determinants of forest/fynbos boundaries in the Cape Province. J Veg Sci 1:483–490

    Google Scholar 

  • Marschner P, Grierson PF, Rengel Z (2005) Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Appl Soil Ecol 28:191–201

    Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Chem Biol 8:1028–1033

    Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Google Scholar 

  • McIntosh PD, Laffan MD, Hewitt AE (2005) The role of fire and nutrient loss in the genesis of the forest soils of Tasmania and southern New Zealand. For Ecol Manage 220:185–215

    Google Scholar 

  • Melillo JM, Field CB, Molden B (eds) (2003) SCOPE Interaction of the major element cycles: global change and human impacts. Island, Washington

    Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714

    PubMed  CAS  Google Scholar 

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1° × 1° fire history reconstruction for the 20th century. Global Change Biol 11:398–420

    Google Scholar 

  • Nilsson LO, Hüttl RF, Johansson UT (eds) (1995) Nutrient uptake and cycling in forest ecosystems. Kluwer, Dordrecht

    Google Scholar 

  • Polglase PJ, Attiwill PM, Adams MA (1992) Nitrogen and phosphorus cycling in relation to stand age of Eucalyptus regnans F. Muell. III. Labile inorganic and organic P, phosphatase activity and P availability. Plant Soil 142:177–185

    CAS  Google Scholar 

  • Press MC, Scholes JD, Barker MG (eds) (1999) Plant physiological ecology. Blackwell, Oxford

    Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    PubMed  CAS  Google Scholar 

  • Resh S, Binkley D, Parrotta J (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231

    CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004) Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia 139:267–276

    PubMed  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Google Scholar 

  • Sardans J, Peñuelas J (2004) Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 267:367–377

    CAS  Google Scholar 

  • Schenk HJ, Jackson RB (2002) The global biogeography of roots. Ecol Monogr 72:311–328

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic, San Diego

    Google Scholar 

  • Schmidt S, Stewart GR (1999) Glycine metabolism and its occurrence in Australian plant communities. Aust J Plant Physiol 26:253–264

    CAS  Google Scholar 

  • Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165

    CAS  Google Scholar 

  • Schönau APG, Herbert MA (1982) Relationship between growth rate and foliar concentrations of nitrogen, phosphorus and potassium for Eucalyptus grandis. S Afr For J 120:19–23

    Google Scholar 

  • Schönau APG, Herbert MA (1983) Relationships between growth rate, fertilizing and foliar nutrient concentrations for Eucalyptus grandis; preliminary investigations. Fertil Res 4:369–380

    Google Scholar 

  • Schulze E-D (ed) (2000) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies vol 142. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulze E-D, Heinman M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) (2001) Global biogeochemical cycles in the climate system. Academic, San Diego

    Google Scholar 

  • Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizosperic components of soil respiration. Glob Change Biol 12:205–216

    Google Scholar 

  • Scurlock JMO, Olson RJ (2003) NPP Multi-Biome: grassland, boreal forest, and tropical forest sites, 1939–1996. Data set. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, http://www.daac.ornl.gov

    Google Scholar 

  • Scurlock JMO, Cramer W, Olson RJ, Parton WJ, Prince SD (1999) Terrestrial NPP: toward a consistent data set for global model evaluation. Ecol Appl 9:913–919

    Google Scholar 

  • Shane MW, Lambers H (2006) Systemic suppression of cluster-root formation and net P-uptake rates in Grevilea crithmifolia at elevated P supply: a proteacean with resistance for developing symptoms of ‘P toxicity’. J Exp Bot 57:413–423

    PubMed  CAS  Google Scholar 

  • Shane MW, McCully ME, Lambers H (2004) Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae). J Exp Bot 55:1033–1044

    PubMed  CAS  Google Scholar 

  • Taranto MT (2003) Relationships among plant communities and underlying soil and water conditions in the Alcoa Lease Area, Anglesea, Victoria. PhD Thesis, University of Melbourne

    Google Scholar 

  • Thomson VP, Leishman MR (2004) Survival of native plants of Hawkesbury Sandstone communities with additional nutrients: effect of plant age and habitat. Aust J Bot 52:1412–147

    Google Scholar 

  • Van Heerwaarden LM, Toet S, Aerts R (2003) Current measures of nutrient resorption efficiency lead to substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101:664–669

    Google Scholar 

  • Vitousek PM (2005) Nutrient cycling and limitation: Hawaii as a model system. Princeton University Press, Princeton

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Vitousek PM, Field CB (2001) Input/output balances and nitrogen limitation in terrestrial ecosystems. In: Schulze E-D, Heinman M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 217–225

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wardle DA, Waker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    PubMed  CAS  Google Scholar 

  • Warren CR (2006) Potential organic and inorganic N uptake by six Eucalyptus species. Funct Plant Biol 33:653–660

    CAS  Google Scholar 

  • Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005) Endangered plants persist under phosphorus limitation. Nature 437:547–550

    PubMed  CAS  Google Scholar 

  • Witkowski ETF (1989) Effects of nutrients on the distribution of dry mass, nitrogen and phosphorus in seedlings of Protea repens (L.)L. (Proteaceae). New Phytol 112:481–487

    Google Scholar 

  • Witkowski ETF (1991) Growth and competition between seedlings of Protea repens (L.)L. and the alien invasive Acacia saligna (Labill.) Wendl. in relation to nutrient availability. Funct Ecol 4:101–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, M.A. (2007). Nutrient Cycling in Forests and Heathlands: an Ecosystem Perspective from the Water-Limited South. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_12

Download citation

Publish with us

Policies and ethics