Skip to main content

Inorganic Nanoparticles for Biomedical Applications

  • Chapter
NanoScience in Biomedicine

Abstract

Polymer, lipid, metal, semiconductor, and hybrid composite nanoparticles with dimensions < 100 nm, have been developed extensively for potential biomedical applications like drug delivery systems, molecular sensing devices, and diagnostic imaging. In this overview, only inorganic nanoparticles for drug delivery will be addressed. Inorganic nanoparticles exhibit magnetic, electrical and optical properties that differed from their bulk counterparts. These physical properties could be tailored by controlling the size, shape, surface, and domain interactions in the nanoparticles. The incorporation of the unique properties of nanoparticles has expanded alternative platforms for drug delivery. The drug delivery systems highlighted in this overview include unguided, magnetically-guided, and optically-triggered delivery systems. These delivery systems are developed to enable improved localization and control of the drug’s sphere of influence. This would potentially allow for more efficient therapy with lower dosages and reduced adverse side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, E.S., N.J. Gleason, A. Nakahira and J.Y. Ying. Nanostructure processing of hydroxyapatite-based bioceramics, Nano Letters 1: 149 (2001).

    CAS  Google Scholar 

  • Alexiou C., et al. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J. 35: 446 (2006).

    CAS  PubMed  Google Scholar 

  • Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nature Rev. Cancer 2: 750 (2002).

    CAS  Google Scholar 

  • Averitt, R.D., D. Sarkar and N.J. Halas. Plasm on resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 78: 4217 (1997).

    CAS  Google Scholar 

  • Avnir, D., T. Coradin, O. Lev and J. Livage. Recent bioapplications of sol-gel materials. J. Mater. Chem. 16: 1013 (2006).

    CAS  Google Scholar 

  • Babes, L., B. Denizot, G. Tanguy, J.J. Le Jeune and P. Jallet. Synthesis of iron oxide nanoparticles used as MRI contrast agents: A parametric study, J. Colloid Interf. Sci. 212: 474 (1999).

    CAS  Google Scholar 

  • Barnard, A.S. Nanohazards: Knowledge is our first defense. Nat. Mat. 5: 245 (2006).

    CAS  Google Scholar 

  • Behrens, S., et al. Surface engineering of Co and FeCo nanoparticles for biomedical applications. J. Phys. Condens. Matter 18: 2543 (2006).

    Google Scholar 

  • Ben-Nissan, B. Nanoceramics in biomedical applications. MRS Bulletin 1: 28 (2004).

    Google Scholar 

  • Berry, C.C. and A.S.G. Curtis. Functionalization of magnetic nanoparticles for applications in biomedicine. J. Physics D 36: R198 (2003).

    CAS  Google Scholar 

  • Brannon-Peppas, L., and J.O. Blanchette. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Del. Rev. 56: 1649 (2004).

    CAS  Google Scholar 

  • Brinker, C.J. and G.W. Sherrer. Sol-gel Science, Academic Press, New York (1990).

    Google Scholar 

  • Bruce, I.J. and T. Sen. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21: 7029 (2005).

    CAS  PubMed  Google Scholar 

  • Caruso, F. Nanoengineering of particle surfaces. Adv. Mater. 13: 11 (2002).

    Google Scholar 

  • Chan, W.C.W. Bionanotechnology Progress and Advances. Biol. Blood Marrow Transplant. 12: 87 (2006).

    CAS  PubMed  Google Scholar 

  • Chatterjee, J., Y. Haik and C.J. Chen. Size dependent magnetic properties of iron oxide nanoparticles. J. Magnetism Mag. Mater. 257: 113 (2003).

    CAS  Google Scholar 

  • Chavanpatil, M.D., A. Khdair and J. Panyam. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci. Nanotech. 6: 2651 (2006).

    CAS  Google Scholar 

  • Chow, G.M., M.C. Tan, L. Ren and J.Y. Ying. NIR-sensitive nanoparticles. US patent application pending. Publication Number 2006099146 (2006).

    Google Scholar 

  • Coradin, T. and J. Livage. Aqueous silicates in biological sol-gel applications: New perspective for old precursors. Acct. Chem. Res. 40: 819 (2007).

    CAS  Google Scholar 

  • Davey, R.J., J. Garside. From Molecules to Crystallizers. Oxford University Press, Oxford, England (2000).

    Google Scholar 

  • Dolmans, D.E.J.G.J., D. Fukumura and R.K. Jain. Timeline: Photodynamic therapy for cancer. Nat. Rev. Cancer 3: 380 (2003).

    CAS  PubMed  Google Scholar 

  • Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7: 626 (2003).

    CAS  PubMed  Google Scholar 

  • Frimpong, R.A., S. Fraser and J.Z. Hilt. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. J. Biomed Mater. Res. A 80: 1 (2007).

    PubMed  Google Scholar 

  • Gadre, Y.S. and P.I. Gouma. Biodoped ceramics: Synthesis, properties and applications. J. Ame. Ceram. Soc. 89: 2987 (2006).

    CAS  Google Scholar 

  • Gould, P. Nanomagnetism shows in vivo potential. Nanotoday 1: 34 (2006).

    Google Scholar 

  • Green, D.L., J.S. Lin, Y. Lam, M.Z.C. Hu, D.W. Schaefer and M.T. Harris. Size, volume fraction, and nucleation of Stober silica nanoparticles. J. Colloid Interf. Sci. 266: 346 (2003).

    CAS  Google Scholar 

  • Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995 (2005).

    CAS  PubMed  Google Scholar 

  • Hasirci, V., E. Vrana, P. Zorlutuna, A. Ndreu, P. Yilgor, F.B. Basmanav and E. Aydin. Nanobiomaterials: A review of the existing science and technology, and new approaches. J. Biomater. Sci. Polymer Edn. 17: 1241 (2006).

    CAS  Google Scholar 

  • Hayden, M.E. and U.O. Häfeli. ‘Magnetic bandages’ for targeted delivery of therapeutic agents. J. Phys.: Condens. Matter 18: S2877 (2006).

    CAS  Google Scholar 

  • Hilger, A., N. Cüppers, M. Tenfelde and U. Kreibig. Surface and interface effects in the optical properties of silver nanoparticles. Eur. Phys. J. D. 10: 115 (2000).

    CAS  Google Scholar 

  • Hirsch, L.R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100: 13,549 (2003).

    CAS  PubMed  Google Scholar 

  • Hirsch, L.R., A.M. Gobin, A.R. Lowery, F. Tam, R.A. Drezek, N.J. Halas and J.L. West. Metal nanoshells. Annals Biomed. Engin. 34: 15 (2006).

    Google Scholar 

  • Hirsch, L.R., J.B. Jackson, A. Lee, N.J. Halas and J.L. West. A whole blood immunoassay using gold nanoshells. Anal. Chem. 75: 2377 (2003).

    CAS  PubMed  Google Scholar 

  • Holm, B.A., et al. Nanotechnology in biomedical applications. Mol. Cryst. Liq. Cryst. 374: 589 (2002).

    CAS  Google Scholar 

  • Hong, R., N.O. Fischer, T. Emrick and V.M. Rotello. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 17: 4617 (2005).

    CAS  Google Scholar 

  • Hood, E. Nanotechnology: Looking as we leap. Enviro. Health Persp. 112: A741 (2004).

    Google Scholar 

  • Hou, Q., P.A. De Bank and K.M. Shakesheff. Injectable scaffolds for tissue regeneration. J. Mater. Chem. 14: 1915 (2004).

    CAS  Google Scholar 

  • Huang, X.L., B. Zhang, L. Ren, S.F. Ye, L.P. Sun, Q.Q. Zhang, M.C. Tan and G.M. Chow. In vivo toxic studies and biodistribution of NIR-Sensitive Au-Au2S nanoparticles as potential drug delivery carriers. Submitted.

    Google Scholar 

  • Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small 1: 482 (2005).

    CAS  PubMed  Google Scholar 

  • Hughes, G.A., Nanostructure-mediated drug delivery. Nanomed.: Nanotech., Biol. Med. 1: 22 (2005).

    CAS  Google Scholar 

  • Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Comm. 927 (2003).

    Google Scholar 

  • Hyeon, T., S.S. Lee, J. Park, Y. Chung and H.B. Na. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size selection process. J. Am. Chem. Soc. 123: 12,798 (2001).

    CAS  PubMed  Google Scholar 

  • Itokazu, M., T. Sugiyama, T. Ohno, E. Wada and Y. Katagiri. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J. Biomed. Mater Res. 39: 536 (1998).

    CAS  PubMed  Google Scholar 

  • Jaspreet, K.V., M.K. Reddy, V.D. Labhasetwar, Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1: 47 (2005).

    Google Scholar 

  • Jin, S. and K. Ye. Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23: 32 (2007).

    CAS  PubMed  Google Scholar 

  • Jurgons, R., C. Seliger, A. Hilpert, L. Trahms, S. Odenbach and C. Alexiou, Drug loaded magnetic nanoparticles for cancer therapy, J. Phys.: Condens. Matter 18: S2893 (2006).

    CAS  Google Scholar 

  • Foster, K.A., M. Yazdanian and K.L. Audus. Microparticulate uptake mechanisms of in vitro cell culture models of the respiratory epithelium. J Pharmacy Pharmacology 53: 57 (2001).

    CAS  Google Scholar 

  • Kagan, V.E., H. Bayir and A.A. Shvedova. Nanomedicine and nanotoxicology: Two sides of the same coin. Nanomedicine 1: 313 (2005).

    CAS  PubMed  Google Scholar 

  • Kirchner, C., et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett. 5: 331 (2005).

    CAS  PubMed  Google Scholar 

  • Kittel C. Introduction to Solid State Physics. 8th Ed. Hoboken: John Wiley & Sons (2005).

    Google Scholar 

  • Klein, L.C. Processing of nanostructured sol-gel materials. In: A.S. Edelstein and R.C. Cammarata. eds. Nanomaterials: Synthesis, Properties and Applications. Institute of Physics Publishing, Bristol and Philadelphia, pp. 147 (1996).

    Google Scholar 

  • Kossovsky, N., et al. Surface-modified nanocrystalline ceramics for drug delivery applications. Biomaterials 15: 1201 (1994).

    CAS  PubMed  Google Scholar 

  • Kost, J., R. Langer. Responsive polymeric delivery systems. Adv. Drug Del. Rev. 46: 125 (2001).

    CAS  Google Scholar 

  • Kreibig, U. and M. Vollmer. Optical Properties of Metal Clusters. Berlin: Springer (1995).

    Google Scholar 

  • Kumta, P.N., C. Sfeir, D.H. Lee, D. Olton and D. Choi. Nanostructured calcium phosphates for biomedical applications: Novel synthesis and characterization. Acta Biomat. 1: 65 (2005).

    Google Scholar 

  • Lin, X.M. and C.S. Samia. Synthesis, assembly and physical properties of magnetic nanoparticles. J. Magnetism Magnetic Mater. 305: 100 (2006).

    CAS  Google Scholar 

  • Link, S. and M.A. El-Sayed. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19: 409 (2000).

    CAS  Google Scholar 

  • Link, S. and M.A. El-Sayed. Size and temperature dependence of the plasmon absorption of colloidal gold. J. Phys. Chem. B 103: 4212 (1999).

    CAS  Google Scholar 

  • Linnert, T., P. Mulvaney and A. Henglein. Surface chemistry of colloidal silver: Surface Plasmon damping by chemisorbed I-, SH-, and C6H5S-. J. Phys. Chem. 97: 679 (1993).

    CAS  Google Scholar 

  • Livage, J., M. Henry and C. Sanchez. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 18: 259 (1988).

    CAS  Google Scholar 

  • Loo, C., A. Lowery, N. Halas, J. West and R. Drezek. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5: 709 (2005).

    CAS  PubMed  Google Scholar 

  • Love, J.C., L.A. Estroff, J.K. Kriebel, R.G. Nuzzo and G.M. Whitesides. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105: 1103 (2005).

    CAS  PubMed  Google Scholar 

  • Lübbe, A.S., C. Bergemann, J. Brock and D.G. McClure. Physiological aspects in magnetic drug-targeting. J. Magnetism Magnetic Mater. 194: 149 (1999).

    Google Scholar 

  • Luo, D. and W.M. Saltzman. Thinking of silica. Gene therapy 13: 585 (2006).

    CAS  PubMed  Google Scholar 

  • Luo, D. Nanotechnology and DNA Delivery. MRS Bulletin 30: 654 (2005).

    CAS  Google Scholar 

  • Moghimi, S.M., A.C. Hunter and J.C. Murray. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53: 283 (2001).

    CAS  PubMed  Google Scholar 

  • Neuberger, T., B. Schopf, H. Hormann, M. Hofmann and B. von Rechenberg. Superparamagnetic nanoparticles for biomedical applications; Possibilities and limitations of a new drug delivery system. J. Magnetism and Magnetic Mater 293: 483 (2005).

    CAS  Google Scholar 

  • Niederberger, M. and G. Garnweitner. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J. 12: 7282 (2006).

    CAS  Google Scholar 

  • Niemz, M.H. Laser-Tissue Interactions: Fundamentals and Applications. Springer-Verlag: Berlin (2002).

    Google Scholar 

  • Oldenburg, S.J., R.D. Averitt, S.L. Westcott and N.J. Halas. Nanoengineering of optical resonances. Chem. Phys. Lett. 288: 243 (1998).

    CAS  Google Scholar 

  • Olton, D., J. Li, M.E. Wilson, T. Rogers, J. Close, L. Huang, P.N. Kumta and C. Sfeir. Nanostructured calcium phosphates for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials 28: 1267 (2007).

    CAS  PubMed  Google Scholar 

  • Oskam, G. Metal oxide nanoparticles: Synthesis, characterization and application. J. Sol-Gel Sci. Technol. 37: 161 (2006).

    CAS  Google Scholar 

  • Panyam, J. and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Del. Rev. 55: 329 (2003).

    CAS  Google Scholar 

  • Park, J., et al. Ultra-large-scale synthesis of monodisperse nanocrystals. Nature Mater. 3: 891 (2004).

    CAS  Google Scholar 

  • Persson, B.N.J. Polarizability of small spherical metal particles influence of the matrix environment. Surf. Sci. 281: 153 (1993).

    CAS  Google Scholar 

  • Petrak, K., Nanotechnology and site-targeted drug delivery. J. Biomater. Sci. Polymer Edn. 17: 1209 (2006).

    CAS  Google Scholar 

  • Pinchuk, A., U. Kreibig and A. Hilger. Optical properties of metallic nanoparticles: Influence of interface effects and interband transitions. Surf. Sci. 557: 269 (2004).

    CAS  Google Scholar 

  • Pitkethly, M.J. Nanomaterials-the driving force. NanoToday 12: 20 (2004).

    Google Scholar 

  • Prasad, P.N., Nanophotonics. Hoboken, NJ: John Wiley & Sons (2004).

    Google Scholar 

  • Qiang, Y., J. Antony, A. Sharma, J. Nutting, D. Sikes and D. Meyer. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res 8: 489 (2006).

    CAS  Google Scholar 

  • Ren, L. and G.M. Chow. Synthesis of NIR-sensitive Au-Au2S nanocolloids for drug delivery. Mater. Sci. Eng. C 23: 113 (2003).

    Google Scholar 

  • Ren, L., X.L. Huang, B. Zhang, L.P. Sun, Q.Q. Zhang, M.C. Tan and G.M. Chow. Cisplatin loaded Au-Au2S nanoparticles for potential cancer therapy: Cytotoxicity. in vitro Carcinogenicity, and cellular uptake. Submitted.

    Google Scholar 

  • Salgueiriño-Maceira V., R. Caruso and L.M. Liz-Marzán. Coated colloids with tailored optical properties. J. Phys. Chem. B 107: 10,990 (2003).

    Google Scholar 

  • Sato, S., et al. Nanosecond, high-intensity pulsed laser ablation of myocardium tissue at the ultraviolet, visible, and near-infrared wavelengths: In-vitro study. Lasers Surg. Med. 29: 464 (2001).

    CAS  PubMed  Google Scholar 

  • Sayes, C.M., et al. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4: 1881 (2004).

    CAS  Google Scholar 

  • Sershen, S., J. West. Implantable, polymeric systems for modulated drug delivery. Adv. Drug Del. Rev. 54: 1225 (2002).

    CAS  Google Scholar 

  • Sheludko, A. Colloid Chemistry. Elsevier: Amsterdam (1966).

    Google Scholar 

  • Singh, R., et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA. 103: 3357 (2006).

    CAS  PubMed  Google Scholar 

  • Stokes, R.J. and D.F. Evans. Fundamentals of Interfacial Engineering. New York: Wiley-VCH (1997).

    Google Scholar 

  • Tan, M.C. NIR-sensitive nanoparticles for targeted drug delivery. PhD Thesis, (2006).

    Google Scholar 

  • Tan, M.C., J.Y. Ying and G.M. Chow. Structure and microstructure of NIR-absorbing Au-Au2S nanoparticles. Submitted.

    Google Scholar 

  • Temenoff, J.S. and A.G. Mikos. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21: 2405 (2000).

    CAS  PubMed  Google Scholar 

  • Templeton, A.C., W.P. Wuelfing and R.W. Murray. Monolayer-protected cluster molecules. Acc. Chem. Res. 33: 27 (2000).

    CAS  PubMed  Google Scholar 

  • Tirelli, N. (Bio)responsive nanoparticles. Curr. Opin. Coll. Interf. Sci. 11: 210 (2006).

    CAS  Google Scholar 

  • Turkevich, J., P.C. Stevenson and J. Hillier. The nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11: 55 (1951).

    Google Scholar 

  • U.S. Food and Drug Administration. http://www.cfsan.fda.gov/~redbook/red-toca.html, Toxicological Principles for the Safety Assessment of Food Ingredients, 2000.

    Google Scholar 

  • Uchida, A., Y. Shinto, N. Araki and K. Ono. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 10: 440 (1992).

    CAS  PubMed  Google Scholar 

  • Vallet-Regi, M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem. Eur. J. 12: 5934 (2006).

    CAS  Google Scholar 

  • Vallet-Regi, M. Revisiting ceramics for medical applications. Dalton Trans. 44: 5211 (2006).

    PubMed  Google Scholar 

  • Vioux, A. Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 9: 2292 (1997).

    CAS  Google Scholar 

  • Vogel, A. and V. Venugopalan. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103: 577 (2003).

    CAS  PubMed  Google Scholar 

  • Waynant, R.W., I.K. Ilev and I. Gannot. Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. Lond. Ser. A-Math Phys. Eng. Sci. 359: 635 (2001).

    CAS  Google Scholar 

  • Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 19: 316 (2001).

    CAS  PubMed  Google Scholar 

  • West, J.L., N.J. Halas. Applications of nanotechnology to biotechnology. Curr. Opin. Biotech. 11: 215 (2000).

    CAS  PubMed  Google Scholar 

  • West, J.L., N.J. Halas. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng. 5: 285 (2003).

    CAS  Google Scholar 

  • Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small 1: 172 (2005).

    CAS  PubMed  Google Scholar 

  • Xu, Z.P., Q.H. Zeng, G.Q. Lu and A.B. Yu. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science 61: 1027 (2006).

    CAS  Google Scholar 

  • Yin, H., H.P. Too and G.M. Chow. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26: 5818 (2005).

    CAS  PubMed  Google Scholar 

  • Yong, T.H., Apatite-polymer composites for the controlled delivery of bone morphogenetic proteins. PhD Thesis. MIT (2005).

    Google Scholar 

  • Yong, T.H., E.A. Hager and J.Y. Ying. Apatite-polymer composite particles for controlled delivery of BMP-2. Singapore-MIT Alliance Symposium Proceedings (2004).

    Google Scholar 

  • Yu, S. and G.M. Chow. Carboxyl group ( CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 14: 2781 (2004).

    CAS  Google Scholar 

  • Zhou, H.S., I. Honma and H. Komiyama. Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys. Rev. B 50: 12,052 (1994).

    CAS  Google Scholar 

  • Zhu, S.H., et al. Hydroxyapatite nanoparticles as a novel gene carrier. J. Nanoparticle Res. 6: 307 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Chee Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Tan, M.C., Chow, G.M., Ren, L., Zhang, Q. (2009). Inorganic Nanoparticles for Biomedical Applications. In: Shi, D. (eds) NanoScience in Biomedicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49661-8_11

Download citation

Publish with us

Policies and ethics