Skip to main content

Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests

  • Chapter
Tropical Rainforest Responses to Climatic Change

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.10 References

  • Abreu, V. S. and Anderson, J. B. (1998) Glacial eustacy during the Cenozoic: Sequence stratigraphic implications. AAPG Bulletin 82, 1385–1400.

    Google Scholar 

  • Anderson, J. A. R. and Muller, J. (1975) Palynological study of a Holocene peat and a Miocene coal deposit from N.W. Borneo. Review of Palaeobotany and Palynology 19, 291–351.

    Article  Google Scholar 

  • Ashton, P., Givnish, T. and Appanah, S. (1988) Staggered flowering in the Dipterocarpaceae:New insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. American Naturalist 132, 44–66.

    Article  Google Scholar 

  • Awasthi, N. (1992) Changing patterns of vegetation succession through Siwalik succession. Palaeobotanist 40, 312–327.

    Google Scholar 

  • Awasthi, N. and Mehrota, R. C. (1995) Oligocene flora from Makum Coalfield, Assam, India. Palaeobotanist 44, 157–188.

    Google Scholar 

  • Barron, E. J. and Washington, W. M. (1985) Warm Cretaceous climates: High atmospheric CO2 as a plausible mechanism. In: Sundquist et al. (eds.), The Carbon Cycle and Atmospheric C0 2 .: Natural Variations, Archaean to the Present (pp. 546–553). American Geo-physical Union, Washington, D.C.

    Google Scholar 

  • Bartek, L. R., Vail, P. R., Anderson, J. B., Emmet, P. A., and Wu, S. (1991) Effect of Cenozoic ice sheet fluctuations in Antarctica on the stratigraphic signature of the Neogene. Journal of Geophysical Research 96, 6753–6778.

    Google Scholar 

  • Bennett, K. D. (2004) Continuing the debate on the role of Quaternary environmental change on macroevolution. Philosophical Transactions of the Royal Society B 59, 295–303.

    Article  Google Scholar 

  • Berggren, W. A., Kent, V. D., Swisher III, C. C., and Aubrey, M.-P. (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Time Scales and Global Stratigraphic Correlation (SEPM Special Publication 54, pp. 129–212). Society of Economic Palaeontologists and Mineralogists, Tulsa, OK.

    Google Scholar 

  • Bermingham, E. and Dick, C. (2001) The Inga, newcomer or museum antiquity. Science 293, 2214–2216.

    Article  Google Scholar 

  • Birks, H. J. B. and Line, J. M. (1990) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, 1–10.

    Google Scholar 

  • Boltovskoy, D. (1988) The range-through method and firs-last appearance data in palaeontological surveys. Journal of Palaeontology 62, 157–159.

    Google Scholar 

  • Boucot, A. J., Chen Xu, and Scotese, C. R. with contributions by Morley, R. J. (2004, in press). Preliminary Compilation of Cambrian through Miocene Climatically Sensitive Deposits (SEPM Special Publication Series). Society of Economic Palaeontologists and Mineralogists, Tulsa, OK.

    Google Scholar 

  • Burnham, R. J. and Graham, A. (1999) The history of Neotropical vegetation: New developments and status. Annals of the Missouri Botanic Garden 86, 546–589.

    Article  Google Scholar 

  • Bush, M. B. (2002) On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology 177, 5–17.

    Article  Google Scholar 

  • Chandler, M. E. J. (1964) The Lower Tertiary Floras of Southern England: A Summary and Survey of Findings in the Light of Recent Botanical Observations (151 pp.). British Museum,London.

    Google Scholar 

  • Chesters, K. I. M. (1955) Some plant remains from the Upper Cretaceous and Tertiary of West Africa. Annals and Magazine of Natural History 12, 498–504.

    Google Scholar 

  • Christophel, D. C. (1994) The Early Tertiary macrofloras of continental Australia. In: R.S. Hill (ed.), History of Australian Vegetation, Cretaceous’ to Recent (pp. 262–275). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Coetzee, J. A. (1978) Climatic and biological changes in southwestern Africa during the late Cainozoic. Palaeoecology of Africa 10, 13–29.

    Google Scholar 

  • Colinvaux, P. A., De Oliviera, P. E., and Bush, M. B. (2000) Amazonian and Neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19, 141–169.

    Article  Google Scholar 

  • Collinson, M. E. (1983) Fossil Plants of the London Clay (Palaeontological Association Field Guides to Fossils No 1, 121 pp.). Palaeontological Association, London.

    Google Scholar 

  • Collinson, M. E. (1988) The special significance of the Middle Eocene fruit and seed flora from Messel, Western Germany. Courier Forschunginst. Senkenberg 107, 187–197.

    Google Scholar 

  • Crane, P. R. (1987) Vegetational consequences of the angiosperm diversification. In: E. M. Friis, W. G. Chaloner, and P. R. Crane (eds.), The Origins of Angiosperms and Their Biological Consequences (pp. 107–144). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Crane, P. R. and Lidgard, S. (1990) Angiosperm radiation and patterns of Cretaceous palynological diversity. In: P. D. Taylor and G. P. Larwood (eds.), Major Evolutionary Radiations (Systematics Association Special Volume 42, pp. 377–407). Systematics Association, London.

    Google Scholar 

  • Crane, P. R., Friis, E. M., and Pedersen, K. R. (1995) The origin and early diversification of angiosperms. Nature 374, 27–34.

    Article  Google Scholar 

  • Curran, L. M., Trigg, S., McDonald, A. K., Astiani, D., Hardiono, Y. M., Siregar, P., Caniago, I., and Kasischke, E. (2004) Forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003.

    Article  Google Scholar 

  • Daley, B. (1972) Some problems concerning the Early Tertiary climate of southern Britain.Palaeogeography, Palaeoclimatology, Palaeoecology 11, 177–190.

    Article  Google Scholar 

  • Davis, C. C., Bell, C. D., Matthews, S., and Donaghue M. J. (2002) Laurasian migration explains Gondwanan disjunctions: Evidence from Malpighiaceae. Proceedings of the National Academy of Sciences U.S.A. 99, 6933–6937.

    Google Scholar 

  • Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A., and Donaghue, M. J. (2005) Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. The American Naturalist 165, E36–E65.

    Article  Google Scholar 

  • Dettmann. M. E. (1994) Cretaceous vegetation: The microfossil record. In: R. S. Hill (ed.),History of Australian Vegetation: Cretaceous to Recent (pp. 143–170). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Dick, C. W., Abdul-Salim, K., and Bermingham, E. (2003) Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. American Naturalist 160, 691–703.

    Google Scholar 

  • Doyle, J. A. and Donaghue, M. J. (1987) The origin of angiosperms: A cladistic approach. In:E. M. Friis, W. G. Chaloner, and P. R. Crane (eds.), Introduction to Angiosperms: The Origins of Angiosperms and Their Biological Consequences (pp. 17–49). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Doyle, J. A. and Endress, P. K. (1997) Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. International Journal of Plant Science 161, S121–S153.

    Article  Google Scholar 

  • Doyle, J. A. and Le Thomas, A. (1997) Phylogeny and geographic history of Annonaceae.Geographic Physique et Quaternaire 51, 353–351.

    Google Scholar 

  • Duperon-Laudoueneix, M. (1991) Importance of fossil woods (conifers and angiosperms) discovered in continental Mesozoic sediments of Northern Equatorial Africa. Journal of African Earth Sciences 12, 391–396.

    Article  Google Scholar 

  • Dupont, L. M. and Wienelt, M. (1996) Vegetation history of the savanna corridor between the Guinean and the Congolian rain forest during the last 150,000 years. Veget. Hist. Archaeobot. 5, 273–292.

    Article  Google Scholar 

  • Flenley, J. R. (1979) The Equatorial Rain Forest: A Geological History (162 pp.). Butterworths,London.

    Google Scholar 

  • Flenley, J. R. (2005) Palynological richness and the tropical rain forest. In: E. Bermingham, C. Dick, and C. Moritz (eds.), TropicalRainJorests: Past, Present, and Future (pp. 73–77). Chicago University Press, Chicago.

    Google Scholar 

  • Frederiksen, N. O. (1994) Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models. Review of Palaeobotany and Palynology 82, 225–238.

    Article  Google Scholar 

  • Germeraad, J. H., Hopping, C. A., and Muller, J. (1968) Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology 6, 189–348.

    Article  Google Scholar 

  • Givnish, T. J., Evans, T. M., Zihra, M. L., Patterson, T. B., Berry, P. E., and Systma, K.J. (2000) Molecular evolution, adaptive radiation, and geographic diversification in the amphi-Atlantic family Rapataceae: Evidence from ndhF sequences and morphology. Evolution 54, 1915–1937.

    Article  Google Scholar 

  • Greenwood, D. R., 1994. Palaeobotanical evidence for Tertiary climates. In: R. S. Hill (ed.), History of Australian Vegetation: Cretaceous to Recent (pp. 44–59). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Grime, J. B. (1979) Plant Strategies and Vegetation Process. John Wiley & Sons, Chichester,U.K.

    Google Scholar 

  • Haberle, S. (1997) Upper Quaternary vegetation and climate history of the Amazon Basin: Correlating marine and terrestrial records. Proceedings of the Ocean Drilling Program, Scientific Results 155, 381–396.

    Google Scholar 

  • Haberle, S. G and Malin, M. (1998) Late Quaternary vegetation and climate change in the Amazon Basin based on a 50000-year pollen record from the Amazon Fan, ODP Site 932. Quaternary Research 51, 27–38.

    Article  Google Scholar 

  • Haffer, J. (1969) Speciation in Amazonian birds. Science 165, 131–137.

    Article  Google Scholar 

  • Hall, R. (1996) Reconstructing Cenozoic SE Asia. In: R. Hall and D. J. Blundell (eds.), Tectonic Evolution of Southeast Asia (Geological Society Special Publication 106, pp. 152–184). Geological Society, London.

    Google Scholar 

  • Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:Computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353–431.

    Article  Google Scholar 

  • Hallam, A. (1992) Phanerozoic Sea Level Changes (265 pp.). Colombia University Press, New York.

    Google Scholar 

  • Hallam, A. (1994) An Outline ofPhanerozoic Biogeography (246 pp.). Oxford University Press, New York.

    Google Scholar 

  • Herngreen, G. F. W. and Duenas-Jimenez, H. (1990) Dating of the Cretaceous Une Formation, Colombia, and the relationship with the Albian-Cenomanian African-South American microfloral province. Review of Palaeobotany and Palynology 66, 345–359.

    Article  Google Scholar 

  • Herngreen, G. F. W., Kedves, M., Rovnina, L. V., and Smirnova, S. B. (1996) Cretaceous palynological provinces: A review. In: J. Jansonius and D. C. McGregor (eds.), Palynology: Principles and Applications (Vol. 3, pp. 1157–1188). American Association of Stratigraphic Palynologists Foundation, Houston, TX.

    Google Scholar 

  • Hickey, L. J. and Doyle, J. A. (1977) Early Cretaceous fossil evidence for angiosperm evolution. The Botanical Review 43, 1–183.

    Google Scholar 

  • Hooghiemstra, H. (1984) Vegetational and Climatic History of the High Plain of Bogotá, Colombia: A Continuous Record of the Last 3.5 Million Years (Dissertationes Botanicae 79, 368 pp.). J. Cramer, Vaduz, Germany.

    Google Scholar 

  • Hooghiemstra, H. and Ran, E. T. H. (1994) Late Pliocene Pleistocene high resolution pollen sequence of Colombia: An overview of climatic change. Quaternary International 21, 6380.

    Article  Google Scholar 

  • Hooghiemstra, H. and Van der Hammen, T. (1998) Neogene and Quaternary development of the Neotropical rain forest. Earth Science Reviews 44, 147–183.

    Article  Google Scholar 

  • Hoorn, C. (1994) An environmental reconstruction of the palaeo-Amazon River system (Middle Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology 112, 187–238.

    Article  Google Scholar 

  • Hoorn, C. (1997) Palynology of the Pleistocene glacial/interglacial cycles of the Amazon Fan (holes 940A, 944A and 946A). Proceedings of the Ocean Drilling Program, Initial Results 155, 397–407.

    Google Scholar 

  • Hoorn, C. (2000) Palynological evidence for vegetation development and climatic change in the Sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeography, Palaeoclimatology, Palaeoecology 163, 133–161.

    Article  Google Scholar 

  • Hudson, J. D. and Anderson, T. F. (1989) Ocean temperatures and isotopic compositions through time. Transactions Royal Society of Edinburgh, Earth Sciences 80, 183–192.

    Google Scholar 

  • Jacobs, B. F. (1999) Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 145, 231–250.

    Article  Google Scholar 

  • Jacobs, B. F. (2002) Estimation of low-latitude climates using fossil angiosperm leaves: Examples from the Miocene Tugen Hills, Kenya. Palaeobiology 28, 399–421.

    Article  Google Scholar 

  • Jacobs, B. F. and Heerenden, P. S. (2004) Eocene dry climate and woodland vegetation reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 115–123.

    Article  Google Scholar 

  • Jaizan M.D. Jais (1997) Oligocene to Pliocene quantitative stratigraphic palynology of the southern Malay Basin, offshore Malaysia. Unpublished Ph.D. thesis, University of Sheffield (321 pp. + 98 plates).

    Google Scholar 

  • Janzen, D. (1974) Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6, 69–103.

    Article  Google Scholar 

  • Janzen, D. (1976) Why bamboos wait so long to flower. Annual Review of Ecology and Systematics 7, 347–391.

    Article  Google Scholar 

  • Jaramillo, C. and Dilcher, D. L. (2000) Microfloral diversity patterns of the last Paleocene Eocene interval in Colombia, northern South America. Geology 28, 815–818.

    Article  Google Scholar 

  • Johnson, K. R. and Ellis, B. (2002) A tropical rain forest in Colorado 1.4 million years after the Cretaceous Tertiary boundary. Science 296, 2379–2383.

    Article  Google Scholar 

  • Kubitski, K. (2005) Major evolutionary advances in the history of green plants. Acta Phytotaxonomica et Geobotanica 56, 1–10.

    Google Scholar 

  • Kutschera, U. and Niklas, K. J. (2004) The modern theory of biological evolution: An expanded synthesis. NaturwissenschaJten, online publication. Visit www.uni-kassel.de/fb l9/plantphysiology/niklas.pdf

    Google Scholar 

  • Legoux, O. (1978) Quelques espèces de pollen caractéristiques du Néogene du Nigeria. Bulletin Centre Recherche Exploration-Production Elf Aquitaine 2, 265–317.

    Google Scholar 

  • Lelono, E. B. (2000) Palynological study of the Eocene Nanggulan Formation, Central Java, Indonesia. Ph.D. thesis, Royal Holloway, University of London (413 pp.).

    Google Scholar 

  • Leroy, S. and Dupont, L. (1994) Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: The pollen record of ODP Site 658. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 295–316.

    Article  Google Scholar 

  • McPhail, M. K., Alley, N. F., Truswell, E. M. and Sluiter, R. K. (1994) Early Tertiary vegetation: Evidence from spores and pollen. In: R. S. Hill (ed.), History of Australian vegetation: Cretaceous to Recent (pp. 262–275). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Mai, D. H. (1970) Subtropische Elemente im europaischen Tertiare. Palaeontol. Abh. Abt. Palaobot. 3, 441–503.

    Google Scholar 

  • Mai, D. H. (1991) Palaeofloristic changes in Europe and the confirmation of the arctotertiary palaeofloral geofloral concept. Review of Palaeobotany and Palynology 68, 28–36.

    Article  Google Scholar 

  • Manchester, S. R. (1994) Fruits and seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana 58, 1–205.

    Google Scholar 

  • Manchester, S. R. (1999) Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanic Garden 86, 472–522.

    Article  Google Scholar 

  • Mebradu, S., Imnanobe, J., and Kpandei, L.Z. (1986) Palynostratigraphy of the Ahoko sediments from the Nupe Basin, N.W. Nigeria. Review of Palaeobotany and Palynology 48, 303–310.

    Article  Google Scholar 

  • Meijaard, E. (2003) Mammals of south-east Asian islands and their Late Pleistocene environments. Journal of Biogeography 30, 1245–1257.

    Article  Google Scholar 

  • Martin, H. A. (1992) The Tertiary of southeastern Australia: Was it tropical? Palaeobotanist 39,270–280.

    Google Scholar 

  • Miller, K. G., Fairbanks, R. G., and Mountain, G. S. (1987) Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2, 1–19.

    Article  Google Scholar 

  • Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Ollson, R. K., Feigenssen, M. D., and Hernandez, J. C. (2004) Upper Cretaceous sequences and sea-level history. New Jersey Coastal Plain Geological Society of America Bull. 32, 368–393.

    Article  Google Scholar 

  • Moles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., and Westoby, M. (2005) A brief history of seed size. Science 307, 576–580.

    Article  Google Scholar 

  • Monteillet, J. and Lappartient, J.-R. (1981) Fruits et graines du Crétace supérieur des Carrièresde Paki (Senegal). Review of Palaeobotany and Palynology 34, 331–344.

    Article  Google Scholar 

  • Morley, R. J. (1991) Tertiary stratigraphic palynology in Southeast Asia: Current status and new directions. Geol. Soc. Malaysia. Bull. 28, 1–36.

    Google Scholar 

  • Morley, R. J. (1998) Palynological evidence for Tertiary plant dispersals in the Southeast Asian region in relation to plate tectonics and climate. In: R. Hall and J. D. Holloway (eds.), Biogeography and Geological Evolution of SE Asia (pp. 211–234). Backhuys, Leiden, The Netherlands.

    Google Scholar 

  • Morley, R. J. (2000a) Geological Evolution of Tropical Rain Forests (362 pp.). John Wiley & Sons, London.

    Google Scholar 

  • Morley, R. J. (2000b) The Tertiary history of the Malesian Flora. In: L. G. Saw et al. (eds.),Proceedings of the IVth Flora Malesiana Symposium, Kuala Lumpur (pp. 197–210). Forest Research Institute, Kepong, Malaysia.

    Google Scholar 

  • Morley, R. J. (2001) Why are there so many primitive angiosperms in the rain forests of Asia Australia? In: I. Metcalfe, J. M. B. Smith, M. Morwood, and I. Davidson (eds.), Floral and Faunal Migrations and Evolution in SE Asia-Australia (pp. 185–200). Swetz & Zeitliner, Lisse, The Netherlands.

    Google Scholar 

  • Morley, R. J. (2003) Interplate dispersal routes for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6, 5–20.

    Article  Google Scholar 

  • Morley, R. J. (in press) Ecology of Tertiary coals in SE Asia. In: T. A. Moore (ed.), Coal Geology of Indonesia: From Peat Formation to Oil Generation (Advances in Sedimentology Series). Elsevier, North-Holland, The Netherlands.

    Google Scholar 

  • Morley, R. J. and Dick, C. W. (2003) Missing fossils, molecular clocks and the origin of the Melastomataceae. American Journal of Botany 90, 1638–1644.

    Google Scholar 

  • Morley, R. J. and Richards, K. (1993) Gramineae cuticle: A key indicator of late Cenozoic climatic change in the Niger Delta. Review of Palaeobotany and Palynology 77, 119–127.

    Article  Google Scholar 

  • Morley, R. J., Morley, H. P., and Restrepo-Pace, P. (2003) Unravelling the tectonically controlled stratigraphy of the West Natuna Basin by means of palaeo-derived Mid Tertiary climate changes. 29th IPA Proceedings (Vol. 1).

    Google Scholar 

  • Morley, R. J., Morley, H. P., Wonders, A. A., Sukarno, H. W., and Van Der Kaars, S. (2004) Biostratigraphy of Modern (Holocene and Late Pleistocene) Sediment cores from Makassar Straits. In: Deepwater and Frontier Exploration in Asia & Australasia Proceedings, Jakarta, December 2004.

    Google Scholar 

  • Muller, J. (1966) Montane pollen from the Tertiary of N.W. Borneo. Blumea 14, 231–235.

    Google Scholar 

  • Muller, J. (1972) Palynological evidence for change in geomorphology, climate and vegetation in the Mio-Pliocene of Malesia. In: P. S. Ashton and M. Ashton (eds.), The Quaternary Era in Malesia (Geogr. Dept, University of Hull, Misc. Ser 13, pp. 6–34). University of Hull, Hull, U.K.

    Google Scholar 

  • Muller, J., De di Giacomo, E., and Van Erve, A.W. (1987) A palynological zonation for the Cretaceous, Tertiary and Quaternary of northern South America. American Association of Stratigraphic Palynologists, Contributions Series 16, 7–76.

    Google Scholar 

  • Nicklas, K. J., Tiffney, B. H., and Knoll, A. (1980) Apparent changes in the diversity of fossil plants. Evolutionary Biology 12, 1–89.

    Google Scholar 

  • Parrish, J. T., Ziegler, A. M. and Scotese, C. R. (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 67–101.

    Article  Google Scholar 

  • Pearson, P. H. and Palmer, M. R. (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699.

    Article  Google Scholar 

  • Pearson, P. H., Ditchfield, P. W., Singano, J., Harcourt-Brown, J. C., Nicholas, C. J., Olsson, K. R., Shackleton, N. J., and Hall, M. A. (2001) Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487.

    Article  Google Scholar 

  • Pole, M. S. and McPhail, M. K. (1996) Eocene Nypa from Regatta Point, Tasmania. Review of Palaeobotany and Palynology 92, 55–67.

    Article  Google Scholar 

  • Posamentier, H. W. and Allen, G. P. (1999) Siliciclastic Sequence Stratigraphy: Concepts and Applications (SEPM Special Publication). Society of Economic Palaeontologists and Mineralogists, Tulsa, OK.

    Google Scholar 

  • Prance, G.T. (1982) Biological Diversification in the Tropics. Columbia University Press, New York.

    Google Scholar 

  • Pribatini, H. and Morley, R. J. (1999) Palynology of the Pliocene Kalibiuk and Kaliglagah Formations, near Bumiayu, Central Java. In: Tectonics and Sedimentation of Indonesia, Indonesian Sedimentologists Forum (Special Publication No 1, p, 53, Abstract).

    Google Scholar 

  • Quade, J. J., Cerling, T. E. and Bowman, J. R. (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166.

    Article  Google Scholar 

  • Raup, D.M. (1975) Taxonomic diversity estimation using rarefaction. Paleobiology 1, 333–342.

    Google Scholar 

  • Reid, E. M. and Chandler, M. E. J. (1933) The Flora of the London Clay (561 pp.). British Museum (Natural History), London.

    Google Scholar 

  • Reyment, R. A. (1965) Aspects of the Geology of Nigeria (145 pp.). University Press, Ibadan, Nigeria.

    Google Scholar 

  • Richards, K. (2000) Grass pollen and charred cuticle in the Amazon Basin. Linnean Society Palynology Special Interest Group Meeting, October 2000 (Abstract).

    Google Scholar 

  • Richards, K. and Lowe, S. (2003) Plio-Pleistocene palynostratigraphy of the Amazon Fan, offshore Brazil: Insights into vegetation history, palaeoclimate and sequence stratigraphy. Conference of American Association of Stratigraphic Palynologists (AASP), London, England, September 2002 (Abstract).

    Google Scholar 

  • Richardson, J. E., Pennington, R. T., Pennington, T. D., and Hollingsworth, P. M. (2001) Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science 293, 2242–2245.

    Article  Google Scholar 

  • Rull, V. (1999) Palaeofloristic and palaeovegetational changes across the Paleocene/Eocene boundary in northern South America. Review of Palaeobotany and Palynology 107, 8345.

    Article  Google Scholar 

  • Salard-Cheboldaeff, M. (1990) Intertropical African palynostratigraphy from Cretaceous to Late Quaternary times. Journal of African Earth Sciences 11, 1–24.

    Article  Google Scholar 

  • Salami, M. B. (1991) Palynomorph taxa from the “Lower Coal Measures” deposits (?Campanian-Maastrichtian) of Anambra Trough, Southeastern Nigeria. Journal of African Earth Sciences 11, 135–150.

    Article  Google Scholar 

  • Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallon, S., and Lupia, R. (2004) Ferns diversified in the shadow of angiosperms. Nature 428, 553–557.

    Article  Google Scholar 

  • Shackleton, N. and Boersma, A. (1983) The climate of the Eocene ocean. Journal of the Geological Society 138, 153–157.

    Google Scholar 

  • Slik, J. W. F., Poulsen, A. D., Ashton, P. S., Cannon, C. H., Eichhorn, K. A. O., Kartawinata, K., Lanniari, I., Nagamasu, H., Nakagawa, M., van Nieuwstadt, M. G. L. et al. (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. Journal of Biogeography 30, 1517–1531.

    Article  Google Scholar 

  • Smith, A. G., Smith, D. G., and Funnell, B. M. (1994) Atlas of Mesozoic and Cenozoic coastlines (99 pp.). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Stebbins, G. L. (1974) Flowering Plants: Evolution above the Species Level. Belknap Press, Cambridge, MA.

    Google Scholar 

  • Takhtajan, A. (1969) Flowering Plants, Origin and Dispersal (transl. C. Jeffrey, 300 pp.). Oliver & Boyd, Edinburgh/Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Thorne, R. F. (1976) When and where might the tropical angiospermous flora have originated? In: D. J. Mabberley and Chang Kiaw Lan (eds.), Tropical Botany (Vol. 29, pp. 183–189). Gardens Bulletin, Singapore.

    Google Scholar 

  • Tiffney, B. H. (1985b) Perspectives on the origin of the floristic similarity between eastern Asia and Eastern North America. Journal of the Arnold Arboretum 66, 73–94.

    Google Scholar 

  • Upchurch, G. R. and Wolfe, J. A. (1987) Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods. In: E. M. Friis, W. G. Chaloner, and P. H. Crane (eds.), The Origins of Angiosperms and Their Biological Consequences (pp.75–105). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Urrego, L. E. (1997) Los Bosques Inundables del Medio Caqueta: Caracterización y Sucesión (Estudios en la Amazonia Colombiana 14, pp. 1–133). Tropenbos, Bogotá [in Spanish].

    Google Scholar 

  • Van der Hammen, T. and Hooghiemstra, H. (2000) Neogene and Quaternary history of vegetation, climate and plant diversity in Amazonia. Quaternary Science Reviews 19, 725–742.

    Article  Google Scholar 

  • Van der Kaas, W. A. (1991) Palynology of eastern Indonesian marine piston-cores: A Late Quaternary vegetational and climatic history for Australasia. Palaeogeography, Palaeoclimatology, Palaeoecology 85, 239–302.

    Article  Google Scholar 

  • Van Steenis, C. G. G. J. (1962) The land-bridge theory in botany. Blumea 11, 235–372.

    Google Scholar 

  • Whitmore, T. C. and Prance, G. T. (1987) Biogeography and Quaternary History in Tropical America. Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Wilf, P., Ruben Cuneo, M., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D.(2003) High plant diversity from Eocene South America: Evidence from Patagonia. Science 300, 122–125.

    Article  Google Scholar 

  • Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, W. H., Ross, C. A., and van Wagoner, J. C. (1988) Sea-level Changes: An Integrated Approach (SEPM Special Publication 42, 407 pp.). Society of Economic Palaeontologists and Mineralogists, Tulsa, OK.

    Google Scholar 

  • Wing, S. L. and Tiffney, B. H. (1987) Interactions of angiosperms and herbivorous tetrapods through time. In: E. M. Friis, W. G. Chaloner, and P. H. Crane (eds.), The Origins of Angiosperms and Their Biological Consequences (pp 203–224). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Wolfe, J. A. (1977) Palaeogene Floras from the Gulf of Alaska Region (U.S. Geological Survey Professional Paper 997, 208 pp.). U.S. Geological Survey, Reston, VA.

    Google Scholar 

  • Wolfe, J. A. (1985) distributions of major vegetation types during the Tertiary. In: E. T. Sundquist and W. S. Broekner (eds.), The Carbon Cycle and Atmospheric C0 2 : Natural Variations, Archean to Present (American Geophysical Union Monograph 32, pp. 357–376). American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Yamanoi, T. (1974) Note on the first fossil record of genus Dacrydiurn from the Japanese Tertiary. Journal of the Geological Society of Japan 80, 421–423.

    Google Scholar 

  • Yamanoi, T., Tsuda, K., Itoigawa, J., Okamoto, K., and Tacuchi, K. (1980) On the mangrove community discovered from the Middle Miocene formations in southwest Japan. Journal of the Geological Society of Japan 86, 635–638.

    Google Scholar 

  • Zachos, J. C., Pagini, M., Sloan, L., Thomas, E., and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65 Ma to Present. Science 292, 686–693.

    Article  Google Scholar 

  • Zachos, J. C., Wara, W. M., Bohaty, S., Delaney, M. L., Pettrizzo, M. R., Brill, A., Bralower, T. J. and Premoli-Silva, I. (2003) A transient rise in tropical sea surface temperature during the Paleocene Eocene thermal maximum. Sciencexpress 23 October 2003, pp. 1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Praxis Publishing Ltd, Chichester

About this chapter

Cite this chapter

Morley, R.J. (2007). Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In: Tropical Rainforest Responses to Climatic Change. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48842-2_1

Download citation

Publish with us

Policies and ethics