Skip to main content

Geophysical Signatures and Active Tectonics at the South-Central Chilean Margin

  • Chapter
The Andes

Abstract

The ISSA 2000 (Integrated Seismological experiment in the Southern Andes) and SPOC 2001 (Subduction Processes Off Chile) onshore and offshore projects surveyed the Chilean margin between 36 and 40° S. This area includes the location of the 1960 earthquake (M w = 9.5) that ruptured the margin from ∼38° S southwards for ~1000 km. Together with gravity and magnetotelluric components, the active-passive seismic experiments between 36 and 40° S provide the first, complete, high-resolution coverage of the entire seismogenic plate interface.

The observed offshore mode of sediment subduction corresponds well with the landward extension of the reflection seismic profile at 38°S (westernmost portion of line SPOC-South), which shows material transported downwards in a subduction channel. From the slow uplift of the Coastal Cordillera, we conclude that basal accretion of parts of this material controls the seismic architecture and growth of the south Chilean crust. There is almost no seismicity observed along the entire, approximately 130 km wide, seismogenic coupling zone. Furthermore, the study area is characterized by a 25–35 km thick crust beneath the Longitudinal Valley, with high-conductivity zones at 20–40 km depth that correspond to large fault zones. Below the volcanic arc, the crust is generally 35–45 km thick, with a maximum thickness of 55 km at ∼36° S.

The slab steepens southwards along the margin (13°–21°), and a wedge-shaped body at the plate interface can be either interpreted as hydrated mantle with 20–30% serpentinization or, when divided, as mafic crustal material in the upper part and serpentinized mantle in the lower part. The lower plate could suffer slab rollback while the upper-plate kinematic segmentation exhibits fore-arc extension, possibly combined with corner-flow and active lower-plate retreat. At the top of the active subduction channel, underplating, fore-arc uplift and serpentinization are key processes at the south-central Chilean margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger R, Jordan T, Kay SM, Isacks B (1997) The evolution of the Altiplano-Puna Plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • ANCORP-Working Group (1999) Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature 397:341–344

    Article  Google Scholar 

  • ANCORP-Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108(B7): doi 10.1029/2002JB001771

    Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103(C4):8129–8137

    Article  Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334

    Article  Google Scholar 

  • Araneda M, Avendaño MS, Götze H-J, Schmidt S, Munoz J, Schmitz M (1999a) South central Andes gravity, new data base. 6th International Congres of the Brazilian Geophysical Society Abstracts

    Google Scholar 

  • Araneda M, Avendaño MS, Schmidt S, Götze H-J, Muñoz J (1999b) Hoja Puerto Montt, Carta gravimétrica de Chile. SERNAGEOMIN de Chile, Subdirección de Geología, p. 18: Santiago, ISSN: 0717-2796

    Google Scholar 

  • Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–503

    Article  Google Scholar 

  • Bohm M (2004) 3-D Lokalbebentomographie der südlichen Anden zwischen 36° und 40° S. Scientific Technical Report STR04/15, GeoForschungsZentrum Potsdam, http://www.gfz-potsdam.de/bib/pub/str0415

    Google Scholar 

  • Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, Wigger P (2002) The Southern Andes between 36–40°S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Article  Google Scholar 

  • Bostock MG, Hyndman RD, Rondenay S, Peacock SM (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature 417:536–538

    Article  Google Scholar 

  • Brasse H, Soyer W (2001) A magnetotelluric study in the Southern Chilean Andes. Geophys Res Lett 28(19): 3757–3760

    Article  Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107(B5): doi 10.1029/ 2001JB000391

    Google Scholar 

  • Brasse H, Li Y, Kapinos G, Eydam D, Mütschard L (2006) Uniform deflection of induction vectors at the South Chilean continental margin: a hint at electrical anisotropy in the crust. In: Ritter O, Brasse H (eds) Kolloquium Elektromagnetische Tiefenforschung Haus Wohldenberg, Holle, ISSN 0946-7467, pp 281–287

    Google Scholar 

  • Bruhn C (2003) Momententensoren hochfrequenter Ereignisse in Südchile. PhD thesis, University of Potsdam, Germany

    Google Scholar 

  • Buske S, Lüth S, Meyer H, Patzig R, Reichert C, Shapiro S, Wigger P, Yoon M (2002) Broad depth range seismic imaging of the subducted Nazca Slab, North Chile. Tectonophysics 350(4):273–282

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Reynolds P, Arancibia G, Lopez G, Sanhueza A (2002) Late Cenozoic transpressional ductile deformation north of the Nazca-South America-Antarctica triple junction. Tectonophysics 354(3–4):289–314

    Article  Google Scholar 

  • Chinn DS, Isacks BL (1983) Accurate source depths and focal mechanisms of shallow earthquakes in western South America and in the New Hebrides island arc. Tectonics 2(6):529–563

    Google Scholar 

  • Cifuentes IL (1989) The 1960 Chilean Earthquake. J Geophys Res 94(B1):665–680

    Google Scholar 

  • Clift P, Vannucchi PL (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42: doi 10.1029/2003RG000127

    Google Scholar 

  • Dewey JF, Lamb SH (1992) Active tectonics of the Andes. Tectonophysics 205(1–3):79–95

    Article  Google Scholar 

  • Echtler, HP, Vietor T, Goetze H-J, Bohm M, Asch G, Lohrmann J, Melnick D, Tašárová Z (2003) Active tectonics controlled by inherited structures in South Central Chile (36°–42°S) — new tectonophysical insights. 10th Congreso Geológico Chileno, Concepción, Chile

    Google Scholar 

  • Engdahl ER, Villasenor A (2002) Global seismicity: 1900–1999. In: Lee, Kanamori, Jennings, Kisslinger (2002) Int. handbook of earthquake and engineering seismology. pp 665–690

    Google Scholar 

  • Gansser A (1973) Facts and theories on the Andes. J Geol Soc London 129(1):93–131

    Google Scholar 

  • Giambiagi LB, Ramos VA, Godoy E, Alvarez P, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22:1041–1059

    Article  Google Scholar 

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modeling of the South-Central Chilean forearc. Earth Planet Sci Lett 231:23–39

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 401–428, this volume

    Google Scholar 

  • Glodny J, Gräfe K, Echtler H (2006) Mesozoic to Quaternary continental margin dynamics in South Central Chile (36°–42°S): the apatite and zircon fission track perspective. Int J Earth Sci (in press)

    Google Scholar 

  • Gorring ML, Kay SM, Zeitler PK, Ramos VA, Rubiolo D Fernandez ML, Panza JL (1997) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile triple junction. Tectonics 16(1), 1–17

    Article  Google Scholar 

  • Götze H-J (1978) Ein numerisches Verfahren zur Berechnung der gravimetrischen Feldgrößen drei-dimensionaler Modellkörper. Arch Met Geoph Biokl A25:195–215

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53(8):1096–1108

    Article  Google Scholar 

  • Götze H-J, Schmidt S, Schreckenberger B (2002) Preliminary results: gravity. In: Flüh ER, Kopp H, Schreckenberger B (eds) Cruise Report SO161-1 and-4, Subduction Processes of Chile. GEOMAR Report 102:106–117

    Google Scholar 

  • Hacker BR, Abers GA (2004) Subduction Factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst, 5, Q01005, doi 10.1029/2003GC000614

    Article  Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds and H2O content. J Geophys Res 108(B1), doi 10.1029/2001JB001127

    Google Scholar 

  • Hackney RI, Echtler HP, Franz G, Götze H-J, Lucassen F, Marchenko D, Melnick D, Meyer U, Schmidt S, Tašárová Z, Tassara A, Wienecke S (2006) The segmented overriding plate and coupling at the south-central Chilean margin (36–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 355–374, this volume

    Google Scholar 

  • Hervé F (1976) Estudio geologico de la falla Liquine-Reloncavi en el area de Liquine: antecedentes de un movimiento transcurrente (Provincia de Valdivia). Actas Congr Geol Chil 1:B39–B56

    Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in Southern Chile. Episodes 11:183–188

    Google Scholar 

  • Hervé F (1994) The Southern Andes between 39 degrees and 44 degrees S latitude — the geological signature of a transpressive tectonic regime related to a magmatic arc. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the southern Central Andes: structure and evolution of an active continental margin. pp 243–248

    Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • De Ignazio C, Lopez I, Oyarzun R, Marquez (2001) The northern Patagonia Somuncura Plateau basalts: a product of slab-induced, shallow asthenospheric upwelling? Terra Nova 13(2):117–121

    Article  Google Scholar 

  • Isacks BL (1988) Tectonics of the Central Andes. Adv Space Res 9(1): 79–84

    Article  Google Scholar 

  • Jordan TE, Isacks B, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol Soc Am Bull 94(3):341–361

    Article  Google Scholar 

  • Jordan TE, Reynolds JH, Ericsson JP (1997) Variability in age of initial shortening and uplift in the Central Andes. In: Ruddiman WF (ed) Tectonic uplift and climate change. pp 41–61

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rates. A mid-cenozoic trigger for the Andes. Tectonics 20:308–324

    Article  Google Scholar 

  • Kamiya SI, Kobayashi Y (2000) Seismological evidence for the existence of serpentinized wedge mantle. Geophys Res Lett, 27(6): 819–822

    Article  Google Scholar 

  • Khazaradze G, Klotz J (2003) Short-and long-term effects of GPS measured crustal deformation rates along the south central Andes. J Geophys Res doi 10.1029/2002JB001879

    Google Scholar 

  • Kincaid C, Griffith RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425:58–62

    Article  Google Scholar 

  • Kley J, Monaldi CR, Salfity JA (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301(1–2):75–94

    Article  Google Scholar 

  • Krawczyk CM, SPOC Team (2003) Amphibious seismic survey images plate interface at 1960 Chile earthquake. EOS 84(32):301, 304–305

    Google Scholar 

  • Krawczyk CM, Lohrmann J, Oncken O, Stiller M, Mechie J, Bataille K, SPOC Research Group (2004) Basal accretion as mechanism for crustal growth in the 1960 Chile earthquake area. Geophys Res Abs 6 EGU04-A-02306

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425(6960):792–797

    Article  Google Scholar 

  • Le Pichon X, Sibuet JC (1981) Passive margins: a model of formation. J Geophys Res 86(B5):3708–3720

    Article  Google Scholar 

  • Li Y (2000) Numerische Modellierungen von elektromagnetischen Feldern in 2-und 3-dimensionalen anisotropen Leitfähigkeitsstrukturen der Erde nach der Methode der Finiten Elemente. PhD thesis, University of Göttingen

    Google Scholar 

  • Lohrmann J (2002) Identification of parameters controlling the accretive and tectonically erosive mass-transfer mode at the South-Central and North Chilean forearc using scaled 2D sandbox experiments. Scientific Technical Report STR02/10, GeoForschungs-Zentrum Potsdam, http://www.gfz-potsdam.de/bib/ zbstr.htm

    Google Scholar 

  • Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in brittle forearc wedges — a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 237–262, this volume

    Google Scholar 

  • Lüth S, Wigger P, Araneda M, Asch G, Bataille K, Bohm M, Bruhn C, Giese P, Quezada J, Rietbrock A (2003a) A crustal model along 39° S from a seismic refraction profile — ISSA 2000 Rev Geol Chile 30:83–101

    Google Scholar 

  • Lüth S, Mechie J, Wigger P, Flueh ER, Krawczyk CM, Reichert C, Stiller M, Vera E, SPOC Research Group (2003b) Subduction Processes Off Chile (SPOC) — results from the amphibious wide-angle seismic experiment across the Chilean subduction zone. Geophys Res Abs 4

    Google Scholar 

  • Martin MW, Rodriguez C, Godoy E, Duhart P, McDonough M, Campos A, Kato TT (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S): constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18(4):582–605

    Article  Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • Melnick D, Echtler HP (2006) Morphotectonic and geologic digital map compilations of the South-Central Andes (36°–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 565–568, this volume

    Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler HP (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (36–39°S lat). Geol Soc Am Spec P 407:73–95, doi 10.1130/2006.2407(04)

    Google Scholar 

  • Mpodozis C, Ramos VA (1989) The Andes of Chile and Argentina. In: Ericksen GE, Pinochet MTC, Reinemund JA (eds): Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, pp 59–90

    Google Scholar 

  • Patzig R, Shapiro S, Asch G, Giese P, Wigger P (2002) Seismogenic plane of the northern Andean subduction zone from aftershocks of the Antofagsta (Chile) 1995 earthquake. Geophys Res Lett, 29(8): doi 10.1029/2001GL013244

    Google Scholar 

  • Patzwahl R (1998) Plattengeometrie und Krustenstruktur am Kontinentalrand Nord-Chiles aus weitwinkelseismischen Messungen. Berliner Geowiss Abh B30

    Google Scholar 

  • Patzwahl R, Mechie J, Schulze A, Giese P (1999) Two-dimensional velocity models of the Nazca plate subdution zone between 19.5°S and 25°S from wide-angle seismic measurements during the CINCA95 project. J Geophys Res 104(B4):7293–7317

    Article  Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26(16):2517–2520

    Article  Google Scholar 

  • Pek J, Verner T (1997) Finite difference modelling of magnetotelluric fields in 2-D anisotropic media. Geophys J Intern 128:505–521

    Google Scholar 

  • Ramos VA (1989) Andean Foothills structures in northern Magallanes Basin, Argentina. AAPG Bull 73(7):887–903

    Google Scholar 

  • Rauch K (2005) Cyclicity of Peru-Chile trench sediments between 36° and 38°S: a footprint of paleoclimatic variations? Geophys Res Lett 32: doi 10.1029/2004GL022196

    Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 66:174–187

    Article  Google Scholar 

  • Rondenay S, Bostock MG, Shragge J (2001) Multiparameter two-dimensional inversion of scattered teleseismic body waves, 3. Application to the Cascadia data set. J Geophys Res 106:30795–30807

    Article  Google Scholar 

  • Saha A, Basu AR, Jacobsen SB, Poreda RJ, Yin QZ, Yogodzinski GM (2005) Slab devolatilization and Os and Pb mobility in the mantle wedge of the Kamchatka arc. Earth Planet Sci Lett 236(1–2):182–194

    Article  Google Scholar 

  • Schreckenberger B, Götze H-J, Schmidt S, Kewitsch P, Barckhausen U (2002) Gravity. In: Flüh ER, Kopp H, Schreckenberger B (eds): Cruise Report SO161-1&4, Subduction Processes of Chile. GEOMAR Report 102:81–94

    Google Scholar 

  • Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 147–170, this volume

    Google Scholar 

  • SO-161 Shipboard Scientific Party (2002) Cruise Report SO-161, SPOC. BGR internal report, BGR, Hannover

    Google Scholar 

  • Sobolev SV, Babeyko AY (1994) Modeling of mineralogical composition, density, and elastic wave velocities in anhydrous magmatic rocks. Survey in Geophysics 15:515–544

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33:617–620

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the Central Andean region. J South Am Earth Sci 11(3):211–215

    Article  Google Scholar 

  • Stadtlander R, Mechie J, Schulze A (1999) Deep structure of the southern Ural mountains as derived from wide-angle seismic data. Geophys J Int 137:501–515

    Article  Google Scholar 

  • Tašárová Z (2004) Gravity data analysis and interdisciplinary 3D modelling of a convergent plate margin (Chile, 36–42°S). PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2005/19

    Google Scholar 

  • Tašárová Z (2006) An improved gravity database and a three-dimensional density model of the Chilean convergent plate margin (36°–42°S). Geophys J Int, submitted

    Google Scholar 

  • Tebbens SF, Cande SC (1997) Southeast Pacific tectonic evolution from early Oligocene to present. J Geophys Res 102(B6):12061–12084

    Article  Google Scholar 

  • Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S — an appraisal based on fission-track results from the transpressional intraarc Liquine-Ofqui fault zone. Geol Soc Am Bull 114(9):1159–1173

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30°S and 40°S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • Wagner LS, Beck S, Zandt G (2005) Upper mantle structure in the south central Chilean subduction zone (30° to 36° S). J Geophys Res 110: doi 10.1029/2004JB003238

    Google Scholar 

  • Weidelt P (1999) 3-D conductivity models: implications of electrical anisotropy. In: Oristaglio M, Spies B (eds) Three-Dimensional Electromagnetics. Soc Expl Geophys, Tulsa, pp 119–137

    Google Scholar 

  • Wienecke S (2002) Homogenisierung und Interpretation des Schwerefeldes entlang der SALT-Traverse zwischen 36°–42°S. Unpublished Diploma thesis, Freie Universität Berlin, Germany

    Google Scholar 

  • Yañez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger-Juan Fernandez-Maipo major tectonic transition of the Nazca-Andean subduction system at 33–34 degrees S: geodynamic evidence and implications. J South Am Earth Sci 15(1):23–38

    Article  Google Scholar 

  • Yoon M, Buske S, Lueth S, Shapiro SA, Stiller M, Wigger P (2003) Along-strike variations of crustal reflectivity related to the Andean subduction process. Geophys Res Lett 30(4):9/1–9/4

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, Bock G, Asch G, Graeber F, Hanka W, Wylegalla K, Tibi R, Haberland C, Rietbrock A, Giese P, Wigger P, Röwer P, Zandt G, Beck S, Wallace T, Pardo M, Comte D (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408(21):958–961

    Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the Southern Andes. In: Kay SM, Ramos VA (eds)Evolution of an Andean Margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (36–39°S lat). Geol Soc Am Spec P 407:61–72, doi 10.1130/2006.2407(03)

    Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Intern 108(1):16–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krawczyk, C.M. et al. (2006). Geophysical Signatures and Active Tectonics at the South-Central Chilean Margin. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_8

Download citation

Publish with us

Policies and ethics