Skip to main content

Contributions of Cell Death to Aging in C. elegans

  • Chapter
The Molecular Genetics of Aging

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 29))

Abstract

There is little question that cell death contributes in a significant way to development, homeostasis, and disease. The roles of cell death and cell-death genes in the process of aging, however, have not yet been clearly elaborated. The nematode C. elegans has proven to be a powerful genetic model system for studying both cell death and aging. Mutations affecting either cellular death or animal life span have been identified, providing the tools to evaluate genetic contributions of cell death to aging. Here, we briefly review the genetics of life span and the genetics of cell death in C. elegans. We discuss what is known of the contributions of apoptotic and necrotic cell death genes to aging and highlight pressing questions for more detailed evaluation of the role of cell death in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi H, Fujiwara Y, Ishii N (1998) Oxygen is a determinant of aging in Caenorhabditis elegans. J Gerontol Biol Sci 53A: B240 - B244

    Article  CAS  Google Scholar 

  • Adams JM, Cory S (1998) The Bd-2 protein family: arbiters of cell survival. Science 281: 13221326

    Google Scholar 

  • Berger AJ, Hart AC, Kaplan JM (1998) Gas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci 18: 2871–2880

    PubMed  CAS  Google Scholar 

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313–20316

    Article  PubMed  CAS  Google Scholar 

  • Bolanowski MA, Jacobson LA, Russell RL (1983) Quantitative measures of aging in the nematode Caenorhabditis elegans: II. Lysosomal hydrolases as markers of senescence. Mech Ageing Dev 21: 295–319

    Google Scholar 

  • Braeckman BP, Houthoofd K, De Vreese A, Vanfleteren JR (1999) Apparent uncoupling of energy production and consumption in long-lived Clk mutants of Caenorhabditis elegans. Curr Biol 9: 493–496

    Article  PubMed  CAS  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018

    Google Scholar 

  • Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82: 358–370

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Wolinsky E (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345: 410–416

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan A, O’Rourke K, Dixit V (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Gumienny TL, Hengartner M, Driscoll M (2000) A common set of engulfment genes mediates the removal of both apoptotic and necrotic cells in C. elegans. (submitted)

    Google Scholar 

  • Darr D, Fridovich I (1995) Adaptation to oxidative stress in young, but not in mature or old, Caenorhabditis elegans. Free Radic Biol Med 18: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141: 1399–1406

    PubMed  CAS  Google Scholar 

  • Driscoll M (1996) Cell death in C. elegans: molecular insights into mechanisms conserved between nematodes and mammals. Brain Pathol 6: 411–425

    Article  PubMed  CAS  Google Scholar 

  • Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349: 588–593

    Article  PubMed  CAS  Google Scholar 

  • Duhon SA, Johnson TE (1995) Movement as an index of vitality: comparing wild type and the age-1 mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 50: B254 - B261

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cell 44: 817–829

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129: 79–94

    PubMed  CAS  Google Scholar 

  • Epstein J, Himmelhoch S, Gershon D (1972) Studies on ageing in nematodes III. Electronmicroscopical studies on age-associated cellular damage. Mech Ageing Dev 1: 245–255

    Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275: 980–983

    Article  PubMed  CAS  Google Scholar 

  • Felkai S, Ewbank JJ, Lemieux JJ, Labbe C, Brown GG, Hekimi S (1999) CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. Embo J 18: 1783–1792

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Harrison SW, Dixon D (1990) A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988a) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86

    PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988b) Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene. J Gerontol 43: B102–109

    PubMed  CAS  Google Scholar 

  • Garcia-Anoveros J, Ma C, Chalfie M (1995) Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Curr Biol 5: 441–448

    Article  PubMed  CAS  Google Scholar 

  • Gems D, Riddle DL (1996) Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379: 723–725

    Article  PubMed  CAS  Google Scholar 

  • Gil EB, Malone Link E, Liu LX, Johnson CD, Lees JA (1999) Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci USA 96: 2925–2930

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling dauer formation in Caenorhabditis elegans. Genetics 137: 107–120

    Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Hall DH, Gu G, Garcia-Anoveros J, Gong L, Chalfie M, Driscoll M (1997) Neuropathology of degenerative cell death in C. elegans. J Neurosci 17: 1033–1045

    PubMed  CAS  Google Scholar 

  • Hedgecock EM, Sulston JE, Thomson IN (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220: 1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO (1997) Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol 32: 363–374

    Article  PubMed  CAS  Google Scholar 

  • Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homologue of the mammalian proto-oncogene bd-2. Cell 76: 665–676

    Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed death. Nature 356: 494–499

    Google Scholar 

  • Högger CH, Estey RH, Kisiel MJ, Zuckerman BM (1977) Surface scanning observations of changes in Caenorhabditis briggsae during aging. Nematologica 23: 213–216

    Article  Google Scholar 

  • Honda S, Ishii N, Suzuki K, Matsuo M (1993) Oxygen-dependent perturbation of life span and aging rate in the nematode. J Gerontol 48: B57–61

    PubMed  CAS  Google Scholar 

  • Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S (1999) The CED-4homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature 398: 777–785

    Article  PubMed  CAS  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N, Yanase S, Ayusawa D, Suzuki K (1998) A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–697

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (1997) Environmental factors and gene activities that influence life span. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 791–813

    Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366: 461–464

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946

    Google Scholar 

  • Klass M, Hirsh D (1976) Non-ageing developmental variant of Caenorhabditis elegans. Nature 260: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 413–429

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Newmeyer D (1997) The release of cytochrome c from mitochondria: a primary site for Bd-2 regulation of apoptosis. Science 275: 1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Korswagen HC, Park J-H, Ohshima Y, Plasterk RH (1997) An activating mutation in Caenorhabditis elegans Gas protein induces neural degeneration. Genes Dev 11: 1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G (1997) The proto-oncogene Bd-2 and its role in regulation apoptosis. Nat Med 3: 614–620

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272: 1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95: 13091–13096

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905–8909

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL (1995) Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139: 1567–1583

    PubMed  CAS  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366: 53–67

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278: 1319–1322

    Google Scholar 

  • Lin YJ, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282: 943–946

    Article  PubMed  CAS  Google Scholar 

  • Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 9368–9372

    Article  PubMed  CAS  Google Scholar 

  • Lithgow GJ, White TM, Hinerfeld DA, Johnson TE (1994) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 49: B270–276

    CAS  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540–7544

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Malone EA, Inoue T, Thomas JH (1996) Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. Genetics 143: 1193–1205

    PubMed  CAS  Google Scholar 

  • Mano I, Driscoll M (1999) DEB/EnaC channels: a touchy superfamily that watches its salt. BioEssasys 21: 568–578

    CAS  Google Scholar 

  • Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 3959–3970

    Google Scholar 

  • Melov S, Lithgow GJ, Fischer DR, Tedesco PM, Johnson TE (1995) Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res 23: 1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Mihaylova VT, Borland CZ, Manjarrez LM, Stern MJ, Sun H (1999) The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc Natl Acad Sci USA 96: 7427–7432

    Article  PubMed  CAS  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143: 1207–1218

    PubMed  CAS  Google Scholar 

  • Murakami S, Johnson TE (1998) Life extension and stress resistance in Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol 8: 1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2: 887–893

    Article  PubMed  CAS  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174: 305–319

    Article  PubMed  CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400

    Article  PubMed  CAS  Google Scholar 

  • Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larva development.

    Google Scholar 

  • In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 739–7768

    Google Scholar 

  • Robertson AMG, Thomson JN (1982) Morphology of programmed cell death in the ventral cord of Caenorhabditis elegans. J Embryol Exp Morphol 67: 89–100

    Google Scholar 

  • Rouault JP, Kuwabara PE, Sinilnikova OM, Duret L, Thierry-Mieg D, Billaud M (1999) Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr Biol 9: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Seshagiri S, Chang WT, Miller LK (1998) Mutational analysis of Caenorhabditis elegans CED-4. FEBS Lett 428: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Shaham S (1998) Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J Biol Chem 273: 35109–35117

    Article  PubMed  CAS  Google Scholar 

  • Shaham S, Horvitz HR (1996) An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 88: 201–208

    Article  Google Scholar 

  • Spector MS, Desnoyers S, Hoeppner D, Hengartner M (1997) Interactions between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653–656

    Article  PubMed  CAS  Google Scholar 

  • Sulston J (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 287–297

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post embryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56: 110–156

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64–119

    Article  PubMed  CAS  Google Scholar 

  • Taub J, Lau JF, Ma C, Hahn JH, Hogue R, Rothblatt J, Chalfie M (1999) A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399: 162–166

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148: 703–717

    PubMed  CAS  Google Scholar 

  • Tomei LD, Umansky SR (1998) Aging and apoptosis control. Neurol Clin 16: 735–745

    Article  PubMed  CAS  Google Scholar 

  • Treinin M, Chalfie M (1990) A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14: 871–877

    Article  Google Scholar 

  • Treinin M, Gillo B, Liebman L, Chalfie M (1998) Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc Natl Acad Sci USA 95: 15492–15495

    Article  PubMed  CAS  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292: 605–608

    PubMed  CAS  Google Scholar 

  • Vanfleteren JR, De Vreese A (1995) The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. EASES J 9: 1355–1361

    Google Scholar 

  • Van Voorhies WA (1992) Production of sperm reduces nematode lifespan. Nature 360: 456–458

    Article  PubMed  Google Scholar 

  • Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S (1995) The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev 9: 1074–1086

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death in Cenorhabditis elegans by human bd-2. Science 258: 1955–1957

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779

    Article  PubMed  CAS  Google Scholar 

  • Walker NI, Harmon BV, Gobe GC, Kerr JF (1988) Patterns of cell death. Methods Achiev Exp Pathol 13: 18–54

    PubMed  CAS  Google Scholar 

  • Wang E (1997) Regulation of apoptosis resistance and ontogeny of age-dependent diseases. Exp Gerontol 32: 471–484

    Article  PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of Caenorhabditis elegans. Philos Trans R Soc Lond 314: 1–340

    Article  CAS  Google Scholar 

  • Wong A, Boutis P, Hekimi S (1995) Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139: 1247–1259

    PubMed  CAS  Google Scholar 

  • Wu D, Wallen H, Nunez G (1997a) Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275: 1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Wallen HD, Inohara N, Nunez G (1997b) Interaction and regulation of the Caenorhabditis elegans death protease CED-3 by CED-4 and CED-9. J Biol Chem 272: 21449–21454

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Chang HY, Baltimore D (1998) Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281: 1355–1357

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wilson DL (1999) Characterization of a life-extending mutation in age-2, a new aging gene in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 54: B137 - B142

    Article  PubMed  CAS  Google Scholar 

  • Yasuda K, Adachi H, Fujiwara Y, Ishii N (1999) Protein carbonyl accumulation in aging dauer formation-defective (daf) mutants of Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 54: B47–53

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-113-converting enzyme. Cell 75: 641652

    Google Scholar 

  • Zou H, Henzel WI, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman BM, Himmelhoch S, Kisiel M (1973) Fine structure changes in the cuticle of adult Caenorhabditis briggsae with age. Nematologica 19: 109–112

    Article  Google Scholar 

  • Zwaal RR, Broeks A, Plasterk RH (1993) Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci USA 90: 7431–7435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herndon, L.A., Driscoll, M. (2000). Contributions of Cell Death to Aging in C. elegans . In: Hekimi, S. (eds) The Molecular Genetics of Aging. Results and Problems in Cell Differentiation, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48003-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48003-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53686-1

  • Online ISBN: 978-3-540-48003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics