Skip to main content

The Molecular Genetic Basis of Positional Information in Insect Segments

  • Chapter
Early Embryonic Development of Animals

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 18))

Abstract

Pattern formation is the process by which a group of initially unspecified cells organizes itself to generate a precise array of structures. Pattern forming systems as diverse as the vertebrate limb, the insect segment, and the hydra body column, are remarkably resistant to environmental effects and to malicious manipulations perpetrated by researchers. Large variations in the overall size of the organism, the number of cells, and the growth conditions can be tolerated. Injuries result in attempts by the surviving cells to regenerate the pattern. For example, if part of an insect segment is damaged or surgically removed then some or all of the missing structures will be regenerated during subsequent molts. Such regenerative responses to injury are termed “pattern regulation”. Pattern regulation almost certainly reflects the same mechanisms that accommodate variations in cell number and arrangement during normal development. Thus, studies of pattern regulation in response to injury should reveal the processes that form pattern de novo during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott LC, Karpen GH, Schubiger G (1981) Compartmental restrictions and blastema formation during pattern regulation in Drosophila imaginal leg discs. Dev Biol 87: 64–75

    PubMed  CAS  Google Scholar 

  • Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22

    PubMed  CAS  Google Scholar 

  • Anderson K (1987) Dorsal-ventral embryonic pattern genes of Drosophila. Trends Genet 3: 91–97

    Google Scholar 

  • Artavanis-Tsakonas S (1988) The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet 4: 95–100

    PubMed  CAS  Google Scholar 

  • Baker NE (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 6: 1765–1773

    PubMed  CAS  Google Scholar 

  • Baker NE (1988a) Embryonic and imaginal requirements for wingless, a segment-polarity gene in Drosophila. Dev Biol 125: 96–108

    PubMed  CAS  Google Scholar 

  • Baker NE (1988b) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103: 289–98

    PubMed  CAS  Google Scholar 

  • Baker NE (1988c) Transcription of the segment-polarity gene wingless in the imaginal discs of Drosophila, and the phenotype of a pupal-lethal wingless mutation. Development 102: 489–97

    PubMed  CAS  Google Scholar 

  • Bate M, Martinez Arias A (1991) The embryonic origin of imaginal discs in Drosophila. Development 112: 755–761

    PubMed  CAS  Google Scholar 

  • Baumgartner S, Bopp D, Burri M, Noll M (1987) Structure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes Dev 1: 1247–1267

    PubMed  CAS  Google Scholar 

  • Baumgartner S, Noll M (1991) Network of interactions among pair-rule genes regulating paired expression during primordial segmentation of Drosophila. Mech Dev 33: 1–18

    Google Scholar 

  • Bejsovec A, Martinez-Arias A (1991) Roles of wingless in patterning the larval epidermis of Drosophila. Development 113: 471–485

    PubMed  CAS  Google Scholar 

  • Bopp D, Burri M, Baumgartner S, Frigerio G, Noll M (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47: 1033–1040

    PubMed  CAS  Google Scholar 

  • Bourouis M, Heitzler P, El Messal M, Simpson P (1989) Mutant Drosophila embryos in which all cells adopt a neural fate. Nature (Lond) 341: 442–444

    CAS  Google Scholar 

  • Bourouis M, Moore P, Ruel L, Grau Y, Heitzler P, Simpson P (1990) An early embryonic product of the gene shaggy encodes a serine/threonine protein kinase related to the CDC28/cdc2+ subfamily. EMBO J 9: 2877–2884

    PubMed  CAS  Google Scholar 

  • Bryant PJ (1975) Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J Exp Zool 193: 49–77

    PubMed  CAS  Google Scholar 

  • Bryant PJ (1987) Experimental and genetic analysis of growth and cell proliferation in Drosophila imaginal discs. In: Genetic regulation of development. Alan R Liss, New York

    Google Scholar 

  • Bryant PJ, Fraser SE (1988) Wound healing, cell communication, and DNA synthesis during imaginal disc regeneration in Drosophila. Dev Biol 127: 197–208

    PubMed  CAS  Google Scholar 

  • Bryant SV, French V, Bryant PJ (1981) Distal regeneration and symmetry. Science 212: 993–1002

    PubMed  CAS  Google Scholar 

  • Busson D, Limbourg-Bouchon B, Mariol M-C, Préat T, Lamour-Isnard C (1988) Genetic analysis of viable and lethal fused mutants of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 197: 221–230

    Google Scholar 

  • Cabrera C, Martinez-Arias A, Bate M (1987) The expression of three members of the achaete-scute gene complex correlates with neuroblast segregation in Drosophila. Cell 50: 425–433

    PubMed  CAS  Google Scholar 

  • Campbell GL, Caveney S (1989) engrailed gene expression in the abdominal segment of Oncopeltus: gradients and cell states in the insect segment. Dev Biol 106: 727–737

    Google Scholar 

  • Campbell GL, Shelton PMJ (1987) Cell behavior during postembryonic pattern regulation in the insect abdomen (Oncopeltus fasciatus) I. Regeneration of the segment borders. Development 101: 221–235

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Carroll SB (1990) Zebra patterns in fly embryos: activation of stripes or repression of interstripes? Cell 60: 9–16

    PubMed  CAS  Google Scholar 

  • Carroll SB, Scott MP (1986) Zygotically-active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell 45: 113–126

    PubMed  CAS  Google Scholar 

  • Carroll SB, Vavra SH (1989) The zygotic control of Drosophila pair-rule gene expression. II. Spatial repression by gap and pair-rule gene products. Dev 107: 673–683

    Google Scholar 

  • Chasan R, Anderson KV (1989) The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56: 391400

    Google Scholar 

  • Cohen B, Wimmer EA, Cohen SM (1991) Early development of the leg and wing primordia in the Drosophila embryo. Mech Dev 33: 229–240

    PubMed  CAS  Google Scholar 

  • Cohen SM, Bronner G, Kuttner F, Jürgens G, Jäckle H (1989) Distal-less encodes a homeodomain protein required for limb development in Drosophila. Nature (Lond) 338: 432–434

    Google Scholar 

  • Cohen SM (1990) Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature (Lond) 343: 173–177

    CAS  Google Scholar 

  • Côté S, Preiss A, Haller J, Schuh R, Kienlin A, Seifert A, Jäckle H (1987) The gooseberry-zipper region of Drosophila: five genes encode spatially restricted transcripts in the embryo. EMBO J 6: 2793–2801

    PubMed  Google Scholar 

  • The Molecular Genetic Basis of Positional Information in Insect Segments 41

    Google Scholar 

  • Crick FH, Lawrence PA (1975) Compartments and polyclones in insect development. Science 189: 340–347

    PubMed  CAS  Google Scholar 

  • Dale L, Bownes M (1980) Is regeneration in Drosophila the result of epimorphic regulation? Wilhelm Roux’s Arch Dev Biol 189: 91–96

    Google Scholar 

  • DeLotto R, Spierer P (1986) A gene required for the specification of dorsal-ventral pattern of Drosophila appears to encode a serine protease. Nature (Lond) 323: 688–692

    CAS  Google Scholar 

  • Denell RE, Hummels KR, Wakimoto B, Kaufman TC (1981) A developmental genetic analysis of the lethal syndrome associated with the Antennapedia locus of Drosophila melanogaster. Dev Biol 81: 43–50

    PubMed  CAS  Google Scholar 

  • Desplan C, Theis J, O’Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes sequence specific DNA binding activity. Nature (Lond) 318: 630–635

    CAS  Google Scholar 

  • DiNardo S, O’Farrell PH (1987) Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev 1: 1212–1225

    PubMed  CAS  Google Scholar 

  • DiNardo S, Kuner JM, Theis J, O’Farrell PH (1985) Development of embryonic pattern in Drosophila melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43: 59–69

    PubMed  CAS  Google Scholar 

  • DiNardo S, Sher E, Heemskerk-Jorgens J, Kassis J, O’Farrell P (1988) Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature (Lond) 332: 604–609

    CAS  Google Scholar 

  • Doe CQ, Goodman CS (1985) Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111: 206–219

    Google Scholar 

  • Driever W, Nusslein-Volhard C (1989) The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature (Lond) 337: 138–143

    CAS  Google Scholar 

  • Eaton S, Kornberg TB (1990) Repression of ci-D in posterior compartments of Drosophila by engrailed. Genes Dev 4: 1068–1077

    PubMed  CAS  Google Scholar 

  • Eldon ED, Pirotta V (1991) Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes. Development 111: 367–378

    PubMed  CAS  Google Scholar 

  • Fausto-Sterling A (1971) On the timing and place of action during embryogenesis of the female-sterile mutants fused and rudimentary Drosophila melanogaster. Dev Biol 26: 452–463

    PubMed  CAS  Google Scholar 

  • Fausto-Sterling A (1978) Pattern formation in the wing veins of the fused mutant (Drosophila melanogaster). Dev Biol 63: 358–369

    PubMed  CAS  Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcript. Nature (Lond) 313: 284–289

    CAS  Google Scholar 

  • Foe VE (1989) Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107: 1–22

    PubMed  CAS  Google Scholar 

  • Foe VE, Alberts BM (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. Cell Sci J 61: 31–70

    CAS  Google Scholar 

  • French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193: 969–981

    PubMed  CAS  Google Scholar 

  • Frasch M, Levine M (1987) Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev 1: 981–995

    PubMed  CAS  Google Scholar 

  • Frigerio G, Burri M, Bopp D, Baumgartner M, Noll M (1986) Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47: 735–746

    PubMed  CAS  Google Scholar 

  • Frischer LE, Hagen FS, Garber RL (1986) An inversion that disrupts the Antennapedia gene causes abnormal structure and localization of RNAs. Cell 47: 1017–1023

    PubMed  CAS  Google Scholar 

  • Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp 29: 161–182

    PubMed  Google Scholar 

  • Garcia-Bellido A (1977) Homeotic and atavic mutations in insects. Am Zool 17: 613–629

    Google Scholar 

  • Garcia-Bellido A, Lawrence PA, Morata G (1979) Compartments in animal development. Sci Am 241: 102–110

    Google Scholar 

  • Garcia-Bellido A, Ripoll P, Morata G (1973) Developmental compartmentalization of the wing disk of Drosophila. Nature (Lond) New Biol 245: 251253

    Google Scholar 

  • Gergen JP, Wieschaus EF (1986) Localized requirements for gene activity in segmentation of Drosophila embryos: analysis of armadillo, fused, giant and unpaired mutations in mosaic embryos. Wilhelm Roux’s Arch Dev Biol 195: 49–62

    Google Scholar 

  • Gergen JP, Coulter D, Wieschaus E (1986) Segmental pattern and blastoderm cell identities. In: Subtelny S (ed) Gametogenesis and the early embryo. Liss Symp Soc Dev Biol, New York, pp 195–220

    Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12: 30–39

    PubMed  CAS  Google Scholar 

  • Gonzalez F, Swales L, Bejsovec A, Skaer H, Martinez-Arias A (1991) Secretion and movenment of wingless protein in the epidermis of the Drosophila embryo. Mech Dev 35: 43–54

    PubMed  CAS  Google Scholar 

  • Grau Y, Simpson P (1987) The segment polarity gene costal-2 in Drosophila. I. The organization of both primary and secondary embryonic fields may be affected. Dev Biol 122: 186–200

    Google Scholar 

  • Harding K, Levine M (1988) Gap genes define the limits of Antennapedia and bithorax gene expression during early development in Drosophila EMBO J 7: 205–214

    CAS  Google Scholar 

  • Harding K, Hoey T, Warrior R, Levine M (1989) Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J 8: 1205–1212

    PubMed  CAS  Google Scholar 

  • Harding K, Rushlow C, Doyle HJ, Hoey T, Levine L (1986) Cross-regulatory interactions among pair-rule genes in Drosophila. Science 233: 953–959

    PubMed  CAS  Google Scholar 

  • Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269–279

    PubMed  CAS  Google Scholar 

  • Hazelrigg T, Kaufman TC (1983) Revertants of dominant mutations associated with the Antennapedia gene complex of Drosophila melanogaster. Genetics 105: 581— 600

    Google Scholar 

  • Heemskerk J, DiNardo S, Kostriken R, O’Farrell PH (1991) Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature (Lond) 352: 404–410

    CAS  Google Scholar 

  • Hidalgo A (1991) Interactions between segment polarity genes and the generation of the segmental pattern in Drosophila. Mech Dev 35: 77–87

    PubMed  CAS  Google Scholar 

  • Hidalgo A, Ingham P (1990) Cell patterning in the Drosophila segment: spatial regulation of the segment polarity gene patched. Development 110: 291–301

    PubMed  CAS  Google Scholar 

  • Hiromi Y, Gehring WJ (1987) Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50: 963–974

    PubMed  CAS  Google Scholar 

  • Hooper JE, Scott MP (1989) The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59: 751–765

    PubMed  CAS  Google Scholar 

  • Hooper KL, Parkhurst SM, Ish-Horowicz D (1989) Spatial control of hairy protein expression during embryogenesis. Development 107: 489–504

    PubMed  CAS  Google Scholar 

  • Hoch M, Seifert E, Jäckle H (1991) Gene expression mediated by cis-acting sequences of the Krüppel gene in response to the Drosophila morphogens bicoid and hunchback. EMBO J 10: 2267–2278

    PubMed  CAS  Google Scholar 

  • Howard K, Ingham P (1986) Regulatory interactions between the segmentation genes fushi tarazu, hairy, and engrailed in the Drosophila blastoderm. Cell 44: 949–957

    PubMed  CAS  Google Scholar 

  • Howard K, Ingham P, Rushlow C (1988) Region-specific alleles of the Drosophila segmentation gene hairy. Genes Dev 2: 1037–1046

    PubMed  CAS  Google Scholar 

  • Hülskamp M, Pfeifle C, Tautz D (1990) A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature (Lond) 346: 646–648

    Google Scholar 

  • Immerglück K, Lawrence PA, Bienz M (1990) Induction across germ layers in Drosophila mediated by a genetic cascade. Cell 62: 261–268

    PubMed  Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature (Lond) 335: 25–34

    CAS  Google Scholar 

  • Ingham P, Martinez-Arias A, Lawrence PA, Howard K (1985) Expression of engrailed in the parasegment of Drosophila. Nature (Lond) 317: 634–636

    Google Scholar 

  • Ingham PW, Martinez-Arias A (1986) The correct activation of Antennapedia and bithorax complex genes requires the fushi tarazu gene. Nature (Lond) 324: 592–597

    CAS  Google Scholar 

  • Ingham PW, Baker NE, Martinez-Arias A (1988) Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Nature (Lond) 331: 73–75

    CAS  Google Scholar 

  • Ingham PW, Taylor AM, Nakano Y (1991) Role of the Drosophila patched gene in positional signalling. Nature (Lond) 353: 184–187

    CAS  Google Scholar 

  • Irish VF, Martinez-Arias A, Akam M (1989) Spatial regulation of the Antennapedia and Ultrabithorax genes during Drosophila early development. EMBO J 8: 1527–1537

    PubMed  CAS  Google Scholar 

  • Jaynes JB, O’Farrell PH (1988) Activation and repression of transcription by homeodomain-containing proteins that bind a common site. Nature (Lond) 336: 744–749

    CAS  Google Scholar 

  • Jiang J, Hoey T, Levine M (1991) Autoregulation of a segmentation gene in Drosophila: Combinatorial interactions of the even-skipped homeo box protein with a distal enhancer element. Genes Dev 5: 265–277

    PubMed  CAS  Google Scholar 

  • St Johnston DR, Gelbart WM (1987) Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. EMBO J 6: 2785–2791

    Google Scholar 

  • Joyner AL, Herrup BA, Auerbach CA, Rossant DJ (1991) Subtle cerebellar phenotype in mice homozygous for a targeted deletion of the En-2 homeobox. Science 251: 1239–1243

    PubMed  CAS  Google Scholar 

  • Joyner AL, Kornberg T, Coleman KG, Cox RD, Martin GR (1985) Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43: 29–37

    PubMed  CAS  Google Scholar 

  • Jürgens G, Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Wilhelm Roux’s Arch Dev Biol 196: 141–157

    Google Scholar 

  • Kaufman TC, Lewis R, Wakimoto B (1980) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homeotic gene complex in polytene chromosomal interval 84A, B. Genetics 94: 115–133

    PubMed  CAS  Google Scholar 

  • Klingensmith J, Noll E, Perrimon N (1989) The segment polarity phenotype of Drosophila involves differential tendencies toward transformation and cell death. Dev Biol 134: 130–145

    PubMed  CAS  Google Scholar 

  • Kornberg T (1981) engrailed: a gene controlling compartment and segment formation in Drosophila. Proc Natl Acad Sci USA 78:1095–1099

    Google Scholar 

  • Kornberg T, Siden I, O’Farrell P, Simon M (1985) The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40: 45–53

    PubMed  CAS  Google Scholar 

  • Krasnow MA, Saffman EE, Kornfeld K, Hogness DS (1989) Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57: 1031–1043

    PubMed  CAS  Google Scholar 

  • Kraut R, Levine M (1991) Spatial regulation of the gap gene giant during Drosophila development. Development 111: 601–609

    PubMed  CAS  Google Scholar 

  • Kuner JM, Nakanishi M, Ali Z, Drees B, Gustayson E, Theis J, Kauvar L, Kornberg T, O’Farrell PH (1985) Molecular cloning of engrailed: a gene involved in the development of pattern in Drosophila melanogaster. Cell 42: 309–316

    PubMed  CAS  Google Scholar 

  • Laughon A, Scott MP (1984) Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding proteins. Nature (Lond) 310: 25–31

    CAS  Google Scholar 

  • Lawrence PA (1966) Gradients in the insect segment: the orientation of hairs in the milkweed bug Oncopeltus fasciatus. J Exp Biol 44: 607–620

    Google Scholar 

  • Lawrence PA (1981) The cellular basis of segmentation in insects. Cell 26: 3–10

    PubMed  CAS  Google Scholar 

  • Lawrence PA (1982) Cell lineage of the thoracic muscles of Drosophila. Cell 29: 493–503

    PubMed  CAS  Google Scholar 

  • Lawrence PA (1989) Cell lineage and cell states in the Drosophila embryo. In: Evered D, Marsh J (eds) Cellular basis of morphogenesis, 144. John Wiley, New York, pp 131–149

    Google Scholar 

  • Lawrence PA, Johnston P (1984) On the role of the engrailed + gene in the internal organs of Drosophila. EMBO J 3: 2839–2844

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Morata G (1976) Compartments in the wing of Drosophila: a study of the engrailed gene. Dev Biol 50: 321–337

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Morata G (1983) The elements of the bithorax complex. Cell 35: 595–601

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Johnston P, Macdonald P, Struhl G (1987) Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature (Lond) 328: 440–442

    CAS  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature (Lond) 276: 565–570

    CAS  Google Scholar 

  • Limbourg-Bouchon B, Busson D, Lamour-Isnard C (1991) Interactions between fused, a segment polarity gene in Drosophila, and other segmentation genes. Development 112: 417–429

    PubMed  CAS  Google Scholar 

  • Lindsley DL, Grell HE (1968) Genetic variations of Drosophila melanogaster. Carnegie Inst Washington

    Google Scholar 

  • Locke M (1959) The cuticular pattern in an insect, Rhodnius prolixus, stai. J Exp Biol 36: 459–477

    Google Scholar 

  • Locke, M (1966) The cuticular pattern in an insect: the behavior of grafts in segmented appendages. J Insect Physiol 12: 397–402

    Google Scholar 

  • Locke M, Huie P (1981) Epidermal feet in insect morphogenesis. Nature (Lond) 293: 733–735

    CAS  Google Scholar 

  • Lohs-Schardin M, Sander K, Cremer C, Cremer T, Zorn C (1979) Localized ultraviolet laser microbeam irradiation of early Drosophila embryos: fate maps based on location and frequency of adult defects. Dev Biol 68: 533–545

    PubMed  CAS  Google Scholar 

  • Macdonald PM, Ingham P, Struhl G (1986) Isolation, structure and expression of even-skipped: a second pair-rule gene of Drosophila containing a homeobox. Cell 47: 721–734

    PubMed  CAS  Google Scholar 

  • Mahaffey JW, Kaufman TC (1988) The homeotic genes of the Antennapedia complex and the bithorax complex of Drosophila. In: Malacinski GM (ed) Developmental genetics of higher organisms: a primer in developmental biology. Macmillan, New York, pp 329–360

    Google Scholar 

  • Marcus W (1962) Untersuchiungen über die Polarität der Rumpfhaut von Schmetterlingen. Wilhelm Roux’s Arch Entwicklungsmech Org 154: 56–102

    Google Scholar 

  • Mariol M-C, Préat T, Limbourg-Bouchon B (1987) Molecular cloning of fused, a gene required for normal segmentation in the Drosophila melanogaster embryo. Mol Cell Biol 7: 3244–3251

    PubMed  CAS  Google Scholar 

  • Martinez-Arias A (1985) The development of fused-embryos of Drosophila melanogaster. J Embryol Exp Morphol 87: 99–114

    PubMed  CAS  Google Scholar 

  • Martinez-Arias A (1989) A cellular basis for pattern formation in the insect epidermis. TIG 5: 262–267

    PubMed  CAS  Google Scholar 

  • Martinez-Arias A, Ingham PW (1985) The origin of pattern duplications in segment polarity mutants of Drosophila melanogaster. J Embryol Exp Morphol 87: 129–135

    PubMed  CAS  Google Scholar 

  • Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature (Lond) 313: 639–642

    CAS  Google Scholar 

  • Martinez-Arias A, White RAH (1988) Ultrabithorax and engrailed expression in Drosophila embryos mutant for segmentation genes of the pair-rule class. Development 102: 325–338

    Google Scholar 

  • Martinez-Arias A, Baker NE, Ingham PW (1988) Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103: 157–170

    Google Scholar 

  • Meinhardt H (1983) Cell determination boundaries as organizing regions for secondary embryonic fields. Dev Biol 96: 375–385

    PubMed  CAS  Google Scholar 

  • Meinhardt H (1986) Hierarchical inductions of cell states: a model for segmentation in Drosophila. J Cell Sci (Suppl) 4: 357–381

    CAS  Google Scholar 

  • Meinhardt H, Gierer A (1980) Generation and regeneration of sequences of structures during morphogenesis. J Theor Biol 85: 429–450

    PubMed  CAS  Google Scholar 

  • Mittenthal JE (1981) The rule of normal neighbors: a hypothesis for morphogenetic pattern regulation. Dev Biol 88: 15–26

    PubMed  CAS  Google Scholar 

  • Mohler J (1988) Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120: 1061–1072

    PubMed  CAS  Google Scholar 

  • Mohler J, Eldon ED, Pirotta V (1989) A novel spatial transcription pattern associated with the segmentation gene giant of Drosophila. EMBO J 8: 1539–1548

    PubMed  CAS  Google Scholar 

  • Mohler J, Vani K (1992) Molecular organization and embryonic expression of the hedgehog gene in cell-cell communication in segmental patterning of Drosophila. Development, in the press

    Google Scholar 

  • Morata G, Lawrence PA (1975) Control of compartment development by the engrailed gene in Drosophila. Nature (Lond) 255: 614–617

    CAS  Google Scholar 

  • Morata G, Lawrence PA (1977a) The development of wingless, a homeotic mutation of Drosophila. Dev Biol 56: 227–240

    PubMed  CAS  Google Scholar 

  • Morata G, Lawrence PA (1977b) Homoeotic genes, compartments and cell determination in Drosophila. Nature (Lond) 265: 211–216

    CAS  Google Scholar 

  • Moscoso del Prado J, Garcia-Bellido A (1984) Genetic regulation of the Achaetescute complex of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 193: 242–245

    Google Scholar 

  • Nakano Y, Guerrero I, Hidalgo A, Taylor A, Whittle JRS, Ingham PW (1989) The Drosophila segment polarity gene patched encodes a protein with multiple potential membrane spanning domains. Nature (Lond) 341: 508–513

    CAS  Google Scholar 

  • Nardi JB, Kafatos FC (1976) Polarity and gradients in lepidopteran wing epidermis. J Embryol Exp Morphol 36: 469–487

    PubMed  CAS  Google Scholar 

  • Nardi JB, Magee-Adams SM (1986) Formation of scale spacing patterns in a moth wing. I. Epithelial feet may mediate cell rearrangement. Dev Biol 116: 278–290

    Google Scholar 

  • Nauber U, Pankratz MJ, Kienlin A, Seifert E, Klemm U, Jackle H (1988) Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature (Lond) 336: 489–492

    CAS  Google Scholar 

  • Nübler-Jung K (1974) Cell migration during pattern reconstitution by intercalary regeneration and cell sorting in Dysdercus intermedius (Dist.). Nature (Lond) 248: 610–611

    Google Scholar 

  • Nübler-Jung K (1977) Pattern stability in the insect segment. I. Pattern reconstitution by intercalary regeneration and cell sorting in Dysdercus interemedius Dist. Wilhelm Roux’s Arch Dev Biol 183: 17–40

    Google Scholar 

  • Nüsslein-Volhard C, Roth S (1989) Axis determination in insect embryos. In: Evered D, Marsh J (eds) Cellular basis of morphogenesis, 144. John Wiley, New York, pp 37–64

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature (Lond) 287: 795–801

    Google Scholar 

  • Nüsslein-Volhard C, Lohs-Schardin M, Cremer C (1980) A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature (Lond) 238: 474–476

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux’s Arch Dev Biol 193: 267–282

    Google Scholar 

  • Orenic T, Chidsey J, Holmgren R (1987) Cell and cubitus interruptus Dominant; two segment polarity genes on the fourth chromosome in Drosophila. Dev Biol 124: 50–56

    Google Scholar 

  • Orenic TV, Slusarski C, Kroll KL, Holmgren RA (1990) Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev 4: 1053–1067

    PubMed  CAS  Google Scholar 

  • Pankratz MJ, Seifert E, Gerwin N, Billi B, Nauber U, Jäckle H (1990) Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo. Cell 61: 309–317

    PubMed  CAS  Google Scholar 

  • Patel NH, Kornberg T, Goodman CS (1989a) Expression of engrailed during segmentation in grasshopper and crayfish. Development 107: 201–212

    PubMed  CAS  Google Scholar 

  • Patel NH, Schafer B, Goodman CS, Holmgren R (1989b) The role of segment polarity genes during Drosophila neurogenesis. Genes Dev 3: 890–904

    PubMed  CAS  Google Scholar 

  • Peifer M, Wieschaus E (1990) The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homologue of human plakoglobin. Cell 63: 1167–1178

    PubMed  CAS  Google Scholar 

  • Peifer M, Rauskolb C, Williams M, Riggleman B, Wieschaus E (1991) The segment polarity gene armadillo interacts with the wingless signalling pathway in both embryonic and adult pattern formation. Development 111: 1029–1043

    PubMed  CAS  Google Scholar 

  • Perrimon N, Mahowald AP (1987) Multiple functions of segment polarity genes in Drosophila. Dev Biol 119: 587–600

    PubMed  CAS  Google Scholar 

  • Perrimon N, Smouse D (1989) Multiple functions of a Drosophila homeotic gene, zeste-white 3, during segmentation and neurogenesis. Dev Biol 135: 287–305

    PubMed  CAS  Google Scholar 

  • Perrimon N, Engstrom L, Mahowald AP (1989) Zygotic lethals with specific maternal effect phenotypes in Drosophila melanogaster. I. Loci on the X chromosome. Genetics 121: 333–352

    Google Scholar 

  • Phillips RG, Roberts IJH, Ingham PW, Whittle JRS (1990) The Drosophila segment polarity gene patched is involved in a position-signalling mechanism in imaginal discs. Development 110: 105–114

    PubMed  CAS  Google Scholar 

  • Piepho H (1955) Uber die Ausrichtung der Schuppenbälge and Schuppen am Schmetterlingsrumpf. 42: 22

    Google Scholar 

  • Piepho, H. and C. Hintze-Podufal (1971) Zur Polarität des Insektensegments. I. Induktion des Segmenthinterrandes bei Galleria mellonella L. Biol Zentralbl 90: 419–431

    Google Scholar 

  • Pignoni F, Baldarelli RM, Steingrimsson E, Diaz RJ, Patapoutian A, Merriam JR, Lengyel JL (1990) The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62: 151–163

    PubMed  CAS  Google Scholar 

  • Poole SJ, Kauvar LM, Drees B, Kornberg T (1985) The engrailed locus of Drosophila: structural analysis of an embryonic transcript. Cell 40: 37–43

    PubMed  CAS  Google Scholar 

  • Postlethwait JH, Schneiderman HA (1969) A clonal analysis of determination in Antennapedia, a homeotic mutant of Drosophila melanogaster. Proc Natl Acad Sci USA 64: 176–183

    PubMed  CAS  Google Scholar 

  • Préat T, Thérond P, Lamour-Isnard C, Limbourg-Bouchon B, Tricoire H, Erk I, Mariol M-C, Busson D (1990) A putative serine/threonine protein kinase encoded by the segment polarity fused gene of Drosophila. Nature (Lond) 347: 87–89

    Google Scholar 

  • Price JV, Clifford RJ, Schüpbach T (1989) The maternal ventralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homologue. Cell 56: 1085–1092

    PubMed  CAS  Google Scholar 

  • Reinitz J, Levine M (1990) Control of the initiation of homeotic gene expression by the gap genes giant and tailless in Drosophila. Dev Biol 140: 57–72

    PubMed  CAS  Google Scholar 

  • Reuter R, Panganiban GEF, Hoffman FM, Scott MP (1990) Homeotic genes regulate the spatial expression of putative growth factors in the visceral mesoderm of Drosophila embryos. Development 110: 1031–1040

    PubMed  CAS  Google Scholar 

  • Riggleman B, Schedi P, Wieschaus E (1990) Spatial expression of the Drosophila segment polarity gene armadillo is posttranscriptionally regulated by Wingless. Cell 63: 549–560

    PubMed  CAS  Google Scholar 

  • Riggleman B, Wieschaus E, Schedl P (1989) Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 3: 96–113

    PubMed  CAS  Google Scholar 

  • Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R (1987) The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene Wingless. Cell 50: 649–657

    PubMed  CAS  Google Scholar 

  • Riley PD, Carroll SB, Scott MP (1987) The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev 1: 716–730

    PubMed  CAS  Google Scholar 

  • Rosenberg UB, Schroder C, Preiss A, Kienlin A, Côte S, Riede I, Jäckle H (1986) Structural homology of the product of the Drosophila Krüppel gene with Xenopus transcription factor IIIA. Nature (Lond) 319: 336–339

    CAS  Google Scholar 

  • Rushlow CA, Hogan A, Pinchin SM, Howe KM, Lardelli M, Ish-Horowitz D (1989) The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J 8: 3095–3103

    PubMed  CAS  Google Scholar 

  • Russell MA (1974) Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol 40: 24–39

    PubMed  CAS  Google Scholar 

  • Sampedro J, Guerrero I (1991) Unrestricted expression of the Drosophila gene patched allows normal segment polarity. Nature (Lond) 353: 187–190

    CAS  Google Scholar 

  • Samson M-L, Jackson-Grusby L, Brent R (1989) Gene activation and DNA binding by Drosophila Ultrabithorax and abdominal A proteins. Cell 57: 1045–1052

    PubMed  CAS  Google Scholar 

  • Schneuwly S, Kuroiwa A, Gehring WJ (1987) Molecular analysis of the dominant homeotic Antennapedia phenotype. EMBO J 6: 201–206

    PubMed  CAS  Google Scholar 

  • Scott MP, Carroll SB (1987) The segmentation and homeotic gene network in early Drosophila development. Cell 51: 689–698

    PubMed  CAS  Google Scholar 

  • Scott MP, O’Farrell PH (1986) Spatial programming of gene expression in early Drosophila embryogenesis. Annu Rev Cell Biol 2: 49–80

    PubMed  CAS  Google Scholar 

  • Sharma RP (1973) wingless, a new mutant in Drosophila melanogaster. Drosophila Inf Sery 50:134

    Google Scholar 

  • Siegfried E, Perkins LA, Capaci TM, Perrimon N (1990) Putative protein kinase product of the Drosophila segment-polarity gene zeste-white3. Nature (Lond) 345: 825–829

    CAS  Google Scholar 

  • Simcox AA, Sang JH (1983) When does determination occur in Drosophila embryos? Dev Biol 97: 212–221

    PubMed  CAS  Google Scholar 

  • Simcox AA, Roberts IJH, Hersperger E, Gribbin MC, Shearn A, Whittle JRS (1989) Imaginal discs can be recovered from cultured embryos mutant for the segment polarity genes engrailed, naked and patched but not from wingless. Development 107: 715–722

    Google Scholar 

  • Simpson P (1990) Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system. Development 109: 509–519

    PubMed  CAS  Google Scholar 

  • Simpson P, Crau Y (1987) The segment polarity gene costal-2 in Drosophila II. The origin of imaginal pattern duplications. Dev Biol 122: 201–209

    Google Scholar 

  • Simpson P, El Messal M, Moscoso Del Prado J, Ripoll P (1988) Stripes of positional homologies across the wing blade of Drosophila melanogaster. Dev Biol 103: 391–401

    Google Scholar 

  • Small S, Kraut R, Hoey T, Warrior R, Levine M (1991) Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev 5: 827–839

    PubMed  CAS  Google Scholar 

  • Sokol S, Christian JL, Moon RT, Melton DA (1991) Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752

    PubMed  CAS  Google Scholar 

  • Spencer FA, Hoffman M, Gelbart WM (1982) Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28: 451–461

    PubMed  CAS  Google Scholar 

  • Stanojevic D, Hoey T, Levine M (1989) Sequence-specific DNA-binding activities of the gap proteins hunchback, and Krüppel in Drosophila. Nature (Lond) 341: 331–335

    CAS  Google Scholar 

  • Stanojevic D, Small D, Levine M (1991) Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254: 1385–1387

    PubMed  CAS  Google Scholar 

  • Steward R (1987) Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238: 692–694

    PubMed  CAS  Google Scholar 

  • Struhl G (1981) A homeotic mutation transforming leg to antenna in Drosophila. Nature (Lond) 292: 635–638

    CAS  Google Scholar 

  • Struhl G, Struhl K, Macdonald PM (1989) The gradient morphogen bicoid is a concentration dependent transcriptional activator. Cell 57: 1259–1273

    PubMed  CAS  Google Scholar 

  • Stunipf H (1968) Further studies on gradient-dependent diversification in the pupal cuticle of Galleria mellonella. J Exp Biol 49: 49–59

    Google Scholar 

  • Tautz D, Lehmann R, Schnurch H, Schuh R, Seifert E, Kienlin K, Jäckle H (1987) Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature (Lond) 327: 383–389

    CAS  Google Scholar 

  • Thali M, Müller M, DeLorenzi M, Matthias P, Bienz M (1988) Drosophila homeotic genes encode transcriptional activators similar to mammalian OTF-2. Nature (Lond) 336: 598–601

    Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature (Lond) 346: 847–850

    CAS  Google Scholar 

  • Tiong SYK, Nash D (1990) Genetic analysis of the adenosine3 (Gart) region of the second chromosome of Drosophila melanogaster. Genetics 124: 889–897

    PubMed  CAS  Google Scholar 

  • Treisman J, Desplan C (1989) The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoter. Nature (Lond) 341: 335–337

    CAS  Google Scholar 

  • van den Heuvel M, Nusse R, Johnston P, Lawrence PA (1989) Distribution of the wingless gene product in Drosophila embryos; a protein involved in cell-cell communication. Cell 59: 739–749

    PubMed  Google Scholar 

  • Vincent J-P, O’Farrell PH (1992) The state of engrailed expression is not clonally transmitted during early Drosophila development. Cell 68: 923–931

    PubMed  CAS  Google Scholar 

  • Warrior R, Levine M (1990) Dose-dependent regulation of pair-rule stripes by gap proteins and the initiation of segment polarity. Development 110: 759–767

    PubMed  CAS  Google Scholar 

  • Weiss PA (1939) Principles in development. Henry Holt White RA, Lehmann R (1986) A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell 47: 311–321

    Google Scholar 

  • Whittle JRS (1976) Clonal analysis of a genetically caused duplication of the anterior wing in Drosophila melanogaster. Dev Biol 51: 257–268

    PubMed  CAS  Google Scholar 

  • Wieschaus E, Noell E (1986) Specificity of embryonic lethal mutations in Drosophila analyzed in germ line clones. Wilhelm Roux’s Arch Dev Biol 195: 63–73

    Google Scholar 

  • Wieschaus E, Gehring W (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev Biol 50: 249–263

    PubMed  CAS  Google Scholar 

  • Wieschaus E, Riggleman R (1987) Autonomous requirements for the segment polarity gene armadillo during Drosophila embryogenesis. Cell 49: 177–184

    PubMed  CAS  Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the X chromosome and the fourth chromosome. Wilhelm Roux’s Arch Dev Biol 193: 267–282

    Google Scholar 

  • Wigglesworth VB (1940) Local and general factors in the development of “pattern” in Rhodnius prolixus (Hemiptera). J Exp Biol 36: 180–200

    Google Scholar 

  • Winslow GM, Hayashi S, Krasnow M, Hogness DS, Scott MP (1989) Transcriptional activation by the Antennapedia and fushi tarazu proteins in cultured Drosophila cells. Cell 57: 1017–1030

    PubMed  CAS  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25: 1–47

    PubMed  CAS  Google Scholar 

  • Wright D, Lawrence PA (1981) Regeneration of the segment boundary in Oncopeltus. Dev Biol 85: 317–327

    PubMed  CAS  Google Scholar 

  • Zuo P, Stanojevic D, Colgan J, Han K, Levine M, Manley JL (1991) Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells. Genes Dev 5: 254–264

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hooper, J.E., Scott, M.P. (1992). The Molecular Genetic Basis of Positional Information in Insect Segments. In: Hennig, W. (eds) Early Embryonic Development of Animals. Results and Problems in Cell Differentiation, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47191-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47191-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21836-5

  • Online ISBN: 978-3-540-47191-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics