Skip to main content

Spherical Decision Surfaces Using Conformal Modelling

  • Conference paper
Pattern Recognition (DAGM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2781))

Included in the following conference series:

Abstract

In this paper a special higher order neuron, the hypersphere neuron, is introduced. By embedding Euclidean space in a conformal space, hyperspheres can be expressed as vectors. The scalar product of points and spheres in conformal space, gives a measure for how far a point lies inside or outside a hypersphere. It will be shown that a hypersphere neuron may be implemented as a perceptron with two bias inputs. By using hyperspheres instead of hyperplanes as decision surfaces, a reduction in computational complexity can be achieved for certain types of problems. Furthermore, it will be shown that Multi-Layer Percerptrons (MLP) based on such neurons are similar to Radial Basis Function (RBF) networks. It is also found that such MLPs can give better results than RBF networks of the same complexity. The abilities of the proposed MLPs are demonstrated on some classical data for neural computing, as well as on real data from a particular computer vision problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Mostafa, Y.S.: The Vapnik-Chervonenkis dimension: Information versus complexity in learning. Neural Computation 1(3), 312–317 (1989)

    Article  Google Scholar 

  2. Banarer, V., Perwass, C., Sommer, G.: The hypersphere neuron. In: 11th European Symposium on Artificial Neural Networks, ESANN 2003, Bruges, pp. 469–474. d-side publications, Evere (2003)

    Google Scholar 

  3. Buchholz, S., Sommer, G.: A hyperbolic multilayer perceptron. In: Amari, S.-I., Giles, C.L., Gori, M., Piuri, V. (eds.) International Joint Conference on Neural Networks, IJCNN 2000, Como, Italy, vol. 2, pp. 129–133. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  4. Cybenko, G.: Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 303–314 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, Denver 1989, vol. 2, pp. 524–532. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  6. Fisher, R.A.: The use of multiple measurements in axonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Google Scholar 

  7. Hornik, K.: Approximation capabilities of multilayer feedforward neural networks. Neural Networks 4, 251–257 (1990)

    Article  Google Scholar 

  8. Hoyle, L.: http://www.ku.edu/cwis/units/IPPBR/java/iris/irisglyph.html

  9. Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: Touretzky, D.S., Hinton, G.E., Sejnowski, T. (eds.) Connectionist Models Summer School, Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  10. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, pp. 27–52. Springer, Heidelberg (2001)

    Google Scholar 

  11. Li, H., Hestenes, D., Rockwood, A.: A universal model for conformal geometries. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra, pp. 77–118. Springer, Heidelberg (2001)

    Google Scholar 

  12. Lipson, H., Siegelmann, H.T.: Clustering irregular shapes using high-order neurons. Neural Computation 12(10), 2331–2353 (2000)

    Article  Google Scholar 

  13. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)

    MATH  Google Scholar 

  14. Ritter, H.: Self-organising maps in non-Euclidean spaces. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 97–108. Amer Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  15. Wieland, A., Fahlman, S.E.: (1993), http://www.ibiblio.org/pub/academic/computer-science/neural-networks/programs/bench/two-spirals

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Perwass, C., Banarer, V., Sommer, G. (2003). Spherical Decision Surfaces Using Conformal Modelling. In: Michaelis, B., Krell, G. (eds) Pattern Recognition. DAGM 2003. Lecture Notes in Computer Science, vol 2781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45243-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45243-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40861-1

  • Online ISBN: 978-3-540-45243-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics